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Abstract

The term localisation is derived from the word locale, which traditionally means a small
area or vicinity. In ancient days, localisation meant navigation – an art of finding the way
from one place to another. Tremendous advancement in the science of navigation dates
back to the sixteenth century, when instruments like compasses, sextants and the first ever
clock to keep the time exactly were devised. Advancement in navigation brought ways and
means to explore the world, be it for expansion of the territories or for promoting trade
and business. Since then localisation has been explored for several decades as a classical
problem in many disciplines – including robotics, virtual reality, navigation. Now we are in
the era of ubiquitous computing – a term coined by the visionary Mark Weiser in the early
1990s. Weiser sees technology only as a means to an end, which should take a back seat in
order to allow user to fully concentrate on the task at hand. Looking from a technological
standpoint, today we are surrounded by a wealth of devices enriched with sensing, computing
and communication capabilities which are seamlessly integrated in our daily lives. Knowing
the location of an object is an important cornerstone and fertile research area in ubiquitous
computing.

The growing need of location systems underscores the importance of addressing this
problem – government initiatives to locate emergency call by cellular network providers and
the increasing usage of global positioning systems (GPS) in many commercial applications
as in navigation are just a few examples. Since the field is active and vibrant, new services
and market players are constantly emerging. Google have just launched a new service called
Latitude, which lets smart phone and laptop users share their location with friends and allows
those friends to share their locations in return. Latitude uses satellites and cell towers to
estimate location. The market for GPS products and services alone is expected to grow to
US$ 200 billion by 2015 [167]. Real-time location systems (RTLS) in the transport and
logistics sector drive the penetration of several location-based solutions. The number of
RTLS suppliers is expected to increase from 50 to 200 by 2013, reflecting a market growth
from $145 million in 2008 to $2.7 billion in 2013 [22]. Despite the extraordinary advances
in outdoor localisation and navigation, indoor localisation still remains an open challenge.

Fundamental to any location system are the algorithms used to estimate location. This
thesis focuses on formulation of localisation algorithms with the capability of fusing mea-
surements from multiple modalities. We begin by systematically analysing the basic prin-
ciples of localisation through a review and classification of the state of the art. From our
detailed survey, it is evident that no location system is error-free and suited for all situations.
For example, pure inertial sensors suffer from drift, ultrasound sensors require clear line of
sight and magnetic sensors are affected by ferromagnetic and conductive materials in the
environment. Thus, we rationalise multimodal localisation as one of the promising ways
for improving location accuracy. Apart from improving performance of the location system
in limited measurement volumes, fusion of heterogeneous sensing systems will ultimately
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allow people to move between places covered by different sensing systems without loss of
location knowledge.

We explore localisation algorithms that use multiple sensing modalities to improve accu-
racy and robustness. To ground our work, we have chosen three specific applications covering
both infrastructure-based positioning and ad hoc-based positioning systems. From our taxon-
omy, we create a blueprint of location technologies that would meet those three application
needs.

1. Localisation in office environments to facilitate social networking, as a way to help
coordination of people and understand social patterns. We leverage the existing wire-
less local-area networks (WLAN) infrastructure to sense motion and location with the
main motivation of building wide-area location services. Our contributions include–
(i) in-depth characterisation of received signal strength (RSSI), (ii) novel algorithms
to deduce motion by observing fluctuations in RSSI across all the access points in
range, and (iii) performance comparison using real data against common deterministic
location algorithms with and without adding motion information.

2. Transport and logistics operation (e.g. in warehouses), motivating the need of fine-
grained location information. We use ultra-wideband (UWB) as it copes with harsh
indoor environments better than conventional radio technologies. Our contributions
include– (i) characterisation of heterogeneous observations (pseudoranges and angles)
obtained from two deployments, mimicking real-world (low-overhead) vs. ideal de-
ployment (carefully planned and calibrated), (ii) formulation of algorithms to fuse het-
erogeneous observations and (iii) a thorough evaluation for both static and dynamic
tracking.

3. Emergency response scenarios, motivating the need for ad hoc positioning capabilities.
In particular, we use a combination of inertial sensors and ultrasound sensors. The po-
sition error in a purely inertial system increases with time and requires correction from
external sources. We address this problem by deploying ultrasound sensors as land-
marks correcting for the inertial drift. Our contributions include– (i) characterisation
of inertial and ultrasound data, (ii) algorithms to support guidance and tracking and
(iii) a thorough evaluation from data gathered from real deployments.

While the chosen technologies and applications are not exhaustive, they are representa-
tive as they cover a broad spectrum across several dimensions: accuracy – fine grained to
coarse grained, coverage – room-level to wide-area, dependence – dense infrastructure to ad
hoc, cost – expensive to minimal cost. In every instance, we have illustrated the benefits of
combining multiple modalities.

In short, our contributions include algorithms for motion detection and technology inde-
pendent localisation algorithms that have the ability to fuse readings across different sensing
technologies and incorporate motion models to improve accuracy significantly. Another im-
portant aspect of the work presented in this thesis is the characterisation of the raw measure-
ment errors of the individual modalities. In all cases, we perform a rigorous evaluation of the
presented algorithms by using measurements collected from real deployments.



Samenvatting

Lang geleden betekende lokalisatie (plaatsbepaling) hetzelfde als navigatie – de kunst om
de weg te vinden van A naar B. Al in de zestiende eeuw werd op het gebied van navigatie
enorme wetenschappelijke vooruitgang geboekt, met de ontwikkeling van instrumenten zo-
als het kompas, de sextant, en de allereerste uurwerken die exact de tijd bijhielden. Deze
vooruitgang opende nieuwe mogelijkheden om de wereld te ontdekken, of het nu voor de
verovering van nieuwe gebieden was of voor het drijven van handel. Later is lokalisatie ge-
durende meerdere decennia als een klassiek probleem het onderwerp geworden van studie in
vele disciplines, zoals robotica, virtuele realiteit, en navigatie. We zijn nu aangekomen in het
tijdperk van ubiquitous computing (alomtegenwoordige informatietechnologie) – een term
bedacht door visionair Mark Weiser in de vroege jaren 1990. Weiser ziet technologie slechts
als een middel om een doel te bereiken. Daarbij zou de technologie ergens in de achtergrond
moeten blijven en kan de gebruiker zich op die manier volledig concentreren op de taak die
voor hem ligt. Gezien vanuit een technologisch perspectief zijn we vandaag de dag omge-
ven door een overvloed aan apparaten die kunnen waarnemen, rekenen en communiceren, en
die naadloos geı̈ntegreerd zijn in ons dagelijks leven. De locatie van een object te kennen
vormt een belangrijke hoeksteen van ubiquitous computing en is daardoor een vruchtbaar
onderzoeksgebied.

De groeiende behoefte aan lokalisatiesystemen onderstreept hoe belangrijk het is om dit
probleem aan te pakken – overheidsinitiatieven voor de lokalisatie van noodoproepen via
mobielnetwerkaanbieders en het groeiende gebruik van GPS (global positioning systems) in
vele commerciële toepassingen zoals in navigatie zijn slechts enkele voorbeelden. Het is
een actief en levendig onderzoeksgebied, dus is er een constant groeiend aanbod van nieuwe
diensten en spelers op de markt. Google heeft pas nog een nieuwe dienst gelanceerd met
de naam Latitude, die gebruikers van smart phones en laptops hun locatie laat delen met
vrienden die op hun beurt de mogelijkheid hebben hun eigen locatie ook kenbaar te maken.
Latitude gebruikt satellieten en zendmasten voor mobiele telefonie voor plaatsbepaling. Al-
leen al de markt voor GPS-producten en -diensten zal naar verwachting groeien naar US$
200 miljard in 2015 [167]. Real-time lokalisatiesystemen (RTLS) zijn de drijfveer achter
het binnendringen van verschillende plaatsgerelateerde oplossingen in de transport- en logis-
tieksector. Het aantal aanbieders van RTLS zal naar verwachting groeien van 50 naar 200 in
2013, wat een marktgroei betekent van $ 145 miljoen in 2008 naar $ 2,7 miljard in 2013 [22].
Ondanks de buitengewone vooruitgang in plaatsbepaling en navigatie in buitenomgevingen,
blijft plaatsbepaling in gebouwen nog steeds een uitdaging.

Aan de basis van ieder lokalisatiesysteem staan de algoritmen die gebruikt worden voor
de plaatsbepaling. Dit proefschrift concentreert zich op het formuleren van lokalisatiealgo-
ritmen die metingen uit verschillende soorten systemen kunnen combineren. Om te beginnen
analyseren wij op systematische wijze de grondbeginselen van lokalisatie via een bespreking
en een classificatie van de huidige stand van de techniek. Onze overzichtsstudie toont aan
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dat geen enkel plaatsbepalingssysteem foutvrij en geschikt voor alle situaties is. Zo hebben
puur inertiële sensoren last van drift, vereisen ultrasoonsensoren een vrije zichtverbinding,
en worden magnetische sensoren beı̈nvloed door ferromagnetische en geleidende materialen
in de omgeving. Derhalve beredeneren we dat multimodale lokalisatie een veelbelovende
manier is om de lokalisatienauwkeurigheid te verbeteren. Naast verbeterde prestaties van
het plaatsbepalingssysteem bij een beperkt aantal metingen, zal het combineren van hetero-
gene waarnemingssystemen mensen uiteindelijk de mogelijkheid bieden tussen locaties te
bewegen die gedekt worden door verschillende waarnemingssystemen, zonder verlies van
locatiekennis.

We verkennen lokalisatiealgoritmen die gebruik maken van verschillende waarnemings-
systemen om de nauwkeurigheid en robuustheid te verbeteren. Als fundament voor ons werk
hebben we drie specifieke toepassingen gekozen die samen zowel plaatsbepaling gebaseerd
op infrastructuur als ad hoc plaatsbepaling omvatten. Vanuit onze taxonomie creëren we
een blauwdruk voor lokalisatietechnologieën die aan de vereisten voor die drie toepassingen
voldoen.

1. Lokalisatie in kantooromgevingen om sociale netwerken te faciliteren, als een manier
om de coördinatie van mensen te ondersteunen en sociale patronen te begrijpen. We
maken doelmatig gebruik van de bestaande WLAN-infrastructuur (wireless local-area
networks) voor bewegings- en plaatswaarneming met als belangrijkste motivatie het
bouwen van locatiediensten die een groot gebied bestrijken. Onze bijdragen omvatten
(i) een diepgaande karakterisatie van RSSI-gegevens (ontvangen signaalsterkte), (ii)
nieuwe algoritmen om beweging af te leiden door fluctuaties in RSSI waar te nemen
over alle WLAN access points (toegangspunten) binnen bereik, en (iii) een prestatie-
vergelijking tussen veelgebruikte deterministische lokalisatiealgoritmen zowel met als
zonder toevoeging van bewegingsinformatie, op basis van meetgegevens uit de prak-
tijk.

2. Transport en logistiek (bijvoorbeeld in opslagloodsen) als motivatie voor de noodzaak
van gedetailleerde locatiekennis; onze keus was het gebruik van ultrabreedband (ultra-
wideband, UWB) omdat dat beter in staat is om te gaan met lastige binnenomgevingen
dan conventionele radiotechnologie. Onze bijdragen omvatten (i) een karakterisatie
van heterogene observaties (pseudobereiken en hoeken) verkregen uit twee opstellin-
gen, die een praktische tegenover een ideale toepassing nabootsen, (ii) een formulering
van algoritmen om heterogene observaties samen te voegen, en (iii) een grondige eva-
luatie van zowel statische als dynamische tracking (locatievolgtechnieken).

3. Calamiteitenscenario’s als motivatie voor de noodzaak om ad hoc positiebepaling te
kunnen uitvoeren. In het bijzonder gebruiken we een combinatie van inertiële senso-
ren en ultrasoonsensoren. The positiefout in een puur inertieel systeem neemt toe met
de tijd en vereist extern gestuurde correctie. We pakken dit probleem aan door ultra-
soonsensoren te plaatsen als oriëntatiepunten voor de correctie van de inertiële drift.
Onze bijdragen omvatten (i) een karakterisatie van inertiële en ultrasone gegevens en
(ii) algoritmen om begeleiding en tracking te ondersteunen, en (iii) een grondige eva-
luatie van gegevens verzameld uit de praktijk.



Hoewel de lijst van gekozen technologieën en toepassingen niet uitputtend is, is deze wel
representatief omdat zij een breed spectrum omvat over meerdere dimensies: nauwkeurigheid
– van fijnmazig tot grofmazig, dekkingsgraad – van kamerniveau tot wide-area, afhankelijk-
heid – van infrastructuur met hoge dichtheid tot ad hoc (zonder infrastructuur), kosten – van
duur tot minimale kosten. Voor ieder geval hebben we de voordelen van het combineren van
verschillende soorten systemen geı̈llustreerd.

Kortom, onze bijdragen omvatten bewegingsdetectiealgoritmen en technologieonafhan-
kelijke lokalisatiealgoritmen die het vermogen hebben metingen uit verschillende waarne-
mingstechnologieën te combineren en die bewegingsmodellen in zich hebben om de nauw-
keurigheid significant te verbeteren. Een ander belangrijk aspect van het werk in dit proef-
schrift is de karakterisatie van de ruwe meetfouten van de verschillende systemen. In alle
gevallen voeren we een nauwgezette evaluatie uit van de gepresenteerde algoritmen door
gebruik te maken van metingen die we uit de praktijk hebben verzameld.
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CHAPTER I
Introduction

1.1 Localisation and its relevance
Localisation in ancient days referred to navigation – an art of finding the way from one place
to another. Tremendous advancement in the science of navigation dates back to the sixteenth
century, when instruments like compasses, sextants and the first ever clock to keep the time
exactly were devised. Advancement in navigation brought ways and means to explore the
world, be it for expansion of the territories or for promoting trade and business. Since then
localisation has been explored for several decades as a classical problem in many disciplines:

Navigation systems such as VHF Omnidirectional Ranging (VOR), the ground beacon
based air navigation system, have been used since the 1960s by pilots to navigate to their
destination. The first satellite based system was the US Navy’s TRANSIT system. Opera-
tional in 1968, it provided coarse and intermittent two-dimensional positioning for equipment
on the ground. TRANSIT’s successor, the global positioning system (GPS) [91], improved
on TRANSIT by providing more accurate three-dimensional position estimates at a higher
frequency. It has been in use since the early 1990s in a myriad of military and civilian appli-
cations.

In robotics, localisation is typically a prerequisite for exploration, navigation towards a
known goal, transportation of material, construction or site preparation. Autonomy is the key
aspect in mobile robotics. In many applications, the mobile robot has an a priori map. Given
a map, the robot may localise itself by matching current sensor observations to features in
the map. However, usable maps do not always exist, and it is not always possible to have
accurate externally referenced position estimates. Most of the robotics research is centered
around efficient ways of building these maps, commonly referred to as concurrent localisation
and mapping (CLM) or simultaneous localisation and mapping (SLAM) [181, 180] and on
solving data-association (matching environmental features with features of the partial map)
problem.

Precise location and orientation information is a critical requirement in virtual reality,
which lets the user interact with a virtual environment through the usage of a wide variety
of input modalities. The requirements of virtual reality (VR) and augmented reality (AR)
systems [31] which places a user wearing a head-mounted display in a partially or completely
immersive environment, are applications perhaps requiring the highest demands on accuracy
and update rates, to prevent users from experiencing motion sickness. The head-mounted
displays are typically tracked with accuracies of a few millimetres in position and one degree
in orientation. In addition to catering to high accuracy and update rates, since most of the
applications in this category use markers attached to the users body, the system must be small
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and preferably self-contained.
Vehicular ad hoc network [39] focuses on providing ad hoc networking facility to enable

vehicle-to-vehicle communication or vehicle-to-roadside-infrastructure communication. In
these networks, knowledge of the real-time position of vehicles is a crucial requirement. Re-
search in vehicular ad hoc network (VANET) has resulted in multiple subsets of applications
ranging from vehicle collision avoidance to automatic parking. The important requirement
for VANET localisation is the need for infrastructure development in environments such as
in tunnels and urban canyons. VANET is a classic example where a high mobility scenario
is involved and hence high update rates and responsiveness is a mandatory parameter in the
design and evaluation of location systems used for VANET applications. This is because
slightly outdated positions can be dangerous for certain VANET applications. In addition,
for safety applications like vehicle collision avoidance, high accuracy is required.

In the early 1990s, Mark Weiser introduced the concept of ubiquitous computing [190]–a
computing paradigm of the future, where various computing elements will be so seamlessly
integrated into the environment that they will be invisible to the user. Several factors have fu-
eled this vision–advances in wireless communication, devices, sensors, hardware technology
are paving the way to bridge the gap between the vision and the reality. Closely related to
ubiquitous computing is context-aware computing, which provides relevant information and
services to the user. Research in the fields of ubiquitous computing and its subset, context-
aware computing, has repeatedly highlighted the importance of location information as a
primary attribute of context. Since then, the research community has responded by develop-
ing a myriad of location systems for ubiquitous applications, and many of them have crossed
the boundaries of research labs and have gained commercial relevance to-date.

1.1.1 Market growth and trends
The growing need for location systems underscores the importance of addressing this prob-
lem –government initiatives to locate emergency calls by cellular network providers and the
increasing usage of global positioning system (GPS) in many commercial applications are
just a few examples. Since the field is active and vibrant, new services and market players
are constantly emerging. For instance, the latest initiative by TomTom [20] reports the loca-
tion using GPRS to determine traffic conditions and provide real-time feedback to the users.
Google have just launched a new service called Latitude [72], which lets smart phone and
laptop users share their location with friends and allows those friends to share their locations
in return. Latitude uses satellites and cell towers to estimate location. The market growth for
GPS products and services alone is expected to grow to US$ 200 billion by 2015 [167].

Real-time location systems (RTLS) in various sectors (see Figure 1.1 (a)) drive the pene-
tration of several location-based solutions with different granularity operating both at indoor
and outdoor environments. For instance, RFID based systems for locating objects inside
buildings dominates the supply chain, especially for Returnable Transport Items [127]–recent
announcements by Wal-Mart, the US Department of Defense, Tesco, Marks and Spencer and
other large retailers are mandating the use of RFIDs by their suppliers to simplify the supply
chain and make savings in efficiency. The market is primarily driven by tracking, locating
and monitoring people and things. Also reduction in cost and size accelerates the usage of
this technology. Other compelling solutions based on GPS, GSM, WLAN and UWB are also
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Figure 1.1: RTLS suppliers and market revenue forecasts.
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Figure 1.1: RTLS suppliers and market revenue forecasts.

used in the supply chain and the choice of course depends on the application needs. Accord-
ing to Frost and Sullivan’s market analysis [22] the WLAN-based RTLS market is expected
to contribute to the largest portion of the RTLS market as enterprises are expected to be able
to leverage on the usage of existing WLAN networks. UWB RTLS is expected to be adopted
in areas where a high level of resolution is required whereas passive RTLS is expected to
be adopted due to significantly lower overall cost. From Figure 1.1 (b) & (c) it is clear that
both the global market revenue and trend in the number of RTLS suppliers are increasing
exponentially.

1.1.2 Location-aware applications
The development in positioning technologies, with parallel progress of appropriate stan-
dards [13] and the falling cost of the technology is increasing the spread of positioning to
more and more facets of life. Location technologies have begun to be deployed commer-
cially and are getting integrated with portable mobile devices. In this section we provide a
succinct review of some of the key application areas that make use of location information.
The stress here is to emphasise how location is at the core of several high-value applica-
tions ranging from the time-critical context of emergency response to social networking and
gaming.

• Military: According to IDTechEx forecasts [11] for RTLS one of the major applica-
tion domains would be in military (approximately 44% by 2016). Some of the military
applications include: battlefield surveillance, mapping opposing terrain, nuclear, bio-
logical and chemical attack detection and reconnaissance, sniper localisation, remote
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border security, target tracking and aid in military training [158, 168].

• Safety, Security and Fencing: Camera-based tracking of people is increasingly used
both indoors and outdoors for security and surveillance [50]. Security systems may be
as simple as low cost, wireless, perimeter security fences, to precise, real-time tracking
of intruders throughout a facility [124]. Retailers typically experience an annual loss
rate of 15% for shopping carts, which can add up to millions of dollars for larger
chains [104]. In a smart kindergarden [175] the progress of children can be monitored
by tracking their interaction with toy tops and with each other. Tracking systems based
on radio frequency identification (RFID) monitor children at public places like theme
parks [14].

• Search & Rescue: Positioning and navigation of users (victims) in unprepared en-
vironments has been studied extensively. Be it a search and rescue operation to lo-
cate lost sailors and downed aeroplanes or allowing rescuers to find people trapped in
avalanches [132], localisation is crucial and life-saving. Applications of sensor net-
works, in particular firefighting has been explored in a range of projects. Tracking
of firefighters is proposed for instance based on RFID tags pre-deployed in build-
ings [135]. Tele-operated robots [204] and a network of distributed mobile sensor
systems (on a robot) [111] can be used as well to find victims.

• Gaming & Entertainment: Location technologies have begun to be deployed com-
mercially and are getting to be integrated with portable mobile devices. Location-
aware gaming takes advantage of these developments and combines social face-to-face
aspects of traditional games with the rich complexity that networked computer games
can offer. GPS has proved to be a popular platform for wide-area location-aware gam-
ing [61]. HumanPacman [48] uses tangible interfaces and augmented reality. Location-
based entertainment pods such as Virtuality 2000SU [195], lets a person seated in a
pod wearing a fully immersive head mounted display (HMD) to look around inside a
virtual world. Virtual walk-through systems such as the HiBall tracking system are
commercially available [194].

• Social Co-ordination & Smart Networking: With respect to social co-ordination,
Dodgeball [9] lets people use their mobile phone and SMS to advertise where they
are and see who else is currently present in different interesting areas. Dodgeball
was bought by Google in 2006 [178]. Telecom providers like AT&T [5], offer friend
finder applications that let a friend’s phone be located. Active campus [1] also makes a
map-based buddy list available as a friendfinder application throughout the university
campus. Networking is very important, be it for social interactions or collaboration and
information exchange. Several systems provide wireless conference devices that are
aimed at assisting conference attendees with proximity information. Examples include
nTag [15], SpotMe [18] and IntelliBadge [51].

• Transport & Logistics: The logistics business is fundamentally all about moving
the correct goods from one location to another in the most speedy, reliable and effi-
cient way. Many applications such as tracking high value inventory items or personnel
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in warehouses, ports or manufacturing plants require a precise location information.
Several RTLS solutions – including GPS, global system for mobile communication
(GSM), bar code for identification, and other emerging technologies like wireless lo-
cal area network (WLAN), ultra-wideband (UWB) – are applicable to transport and
logistics operations.

The requirements that any location system must meet are tightly coupled to the applica-
tion needs: accuracy ranging from centimetre to metre level, coverage ranging from indoor
to outdoor, cost ranging from high to low. The remaining sections in this chapter outline
the primary areas of research in the field of localisation and contributions of our work, and
provide an outline for the structure of the thesis.

1.2 Primary areas of research
Localisation has manifested itself as a classical problem in various fields and in this sec-
tion we highlight in brief, the developments and directions of research in localisation since
the emergence of ubiquitous computing. Although the requirements and demands may vary
largely among different applications, the core assessment criterion of any location system
are accuracy – defined as, how much the estimated location deviates from the true location
and coverage – describes the size of the location systems deployment or working area, while
keeping an eye on the cost (infrastructural cost, maintenance and calibration cost). Unfortu-
nately accuracy and coverage of the location systems seldom co-exist and are well correlated
with their deployment cost – ranging from easy to deploy coarse-grained systems spanning
wider area to expensive, carefully tuned, calibrated, fine-grained systems working in limited
deployment area. Hence, even today the research is progressing at an accelerated pace in
order to minimise this tradeoff.

Location systems that provide fine-grained information, such as the Bat system [80], are
typically operational within the confined area of deployment and hence infrastructure must
be deployed large in number, if more coverage is desired. The field gained momentum in
2002 with the Federal Communications Commission (FCC)’s ruling that ultra-wideband de-
vices, particularly suited for high precision ranging, an important phase in localisation, could
be operated without a license. This offered alternative fine-grained technology that could
work well apart from previously proven ultrasound-based sensing, but covering larger de-
ployment area. Most of the ultrasound [80, 160] and ultra-wideband [182] position systems
predominantly rely on accurate timing measurements to estimate position. This fostered the
development of several clock synchronisation mechanisms. Location systems detecting the
time-of-flight (TOF) of the incoming signal require both the receiving and transmitting enti-
ties to be synchronised inorder to determine the distance. This posed a stringent requirement
on nodes/sensing devices to include faster clocks capable of nanosecond resolution. Alterna-
tive techniques based on pseudoranging using time-difference-of-arrival (TDOA) are more
attractive and viable, mainly because there is no need for precise synchronisation between
the transmitting and receiving entities. All the elements of the receiver can be precisely syn-
chronised using stable clocks at each of the receivers which are periodically corrected via
some wired or wireless reference timing signal that is distributed to the receivers.

The uptake of WLANs implemented with radios which make received signal strength
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indication (RSSI) available to the application software provided an accelerating pace to the
field, enabling the location systems to become partially a software rather than an exclusive
hardware task. As a result, many research projects and companies have shown interests in
providing WLAN-based location systems spanning wider area [32, 12]. But such wide-area
location systems do not provide location information of fine-grained granularity without an
extensive radio-mapping (calibration) phase. Collecting radio-fingerprints (a process that
uses pre-recorded measurements of network characteristics from different locations, to esti-
mate the current location) can be time-consuming, especially if the scale of deployment is
large. The radio-fingerprints have to be frequently calibrated to capture any changes in the
environment. Usage of automated robots to help collect the fingerprints have been demon-
strated for small areas [148], however, neither the effects of robot height and time at which
the fingerprint was collected, nor the large-scale practicality of using automated robots to cal-
ibrate the fingerprints has not been studied extensively. Currently, many methods are being
proposed on how to create training data or radio-fingerprints efficiently.

Fundamental to any location system are the algorithms used to estimate location. Position
can be estimated based on a vast number of sensing modalities that express range, angle,
or some other quantity which can be related to position e.g. infrared light intensity, RFID
sightings, WiFi fingerprinting, visible light intensity to infer time of sunset which can be
converted to latitude/longitude. Sensor measurements are noisy due to disturbances in the
environment and the physical characteristics of the sensor itself. The first stage of many
location algorithms is filtering of raw data. There are many different ways to deal with
this, ranging from simple averaging to more sophisticated Bayesian filters [65] to reduce
the noise and estimate the position. Outlying measurements can also be rejected by making
use of statistical methods [189]. Usage of mobility models enables tracking functionality,
i.e. providing continuous availability of location information. Lately attention is shifted to
algorithm development using heterogeneous and/or multimodal data. This is particularly
attractive because no location system provides perfect error-free measurements and can be
available at all times. Thus, it is beneficial if measurements from multiple sensing modalities
and/or multiple sensing systems can be fused in an effective way.

Hightower [88] proposed a software framework that allows multiple sensing technologies
to exist under a single Location Programming Interface. By introducing interfaces between
different components the industry has taken off since the horizontal specialisation lets each
part of the chain do what it is best at. This has been adopted by research and commercial
location systems and has made a significant impact on the field including commercial adop-
tion by Intel [74], research adoption by the PlaceLab project [12], and community adoption
through publicly available location estimation library.

Many of the location algorithms require a priori knowledge of the location of anchors
or infrastructural beacons. While this assumption seems reasonable for a network cover-
ing smaller area, this might be an issue for larger networks (for instance, wireless sensor
network (WSN)). Also in some cases, it is possible for the devices which are installed in
one place to move (due to mechanical vibrations e.g. slamming doors). While this slight
movement may not be significant for certain cases, in some cases small deviations from the
original position can cause significant errors in the final location estimate. In such cases,
it might be desirable to estimate some of these parameters dynamically while the system is

7



Introduction

operational. This makes the idea of autocalibration attractive. Autocalibration also partially
or completely removes the need for people to conduct calibration themselves; calibration for
fine-grained systems can be time-consuming and require expert knowledge. The current trend
is inheriting some of the existing approaches in other fields such as robotics and tracking in
virtual environments [192]. The geometry of the beacon placement is crucial for achieving
good accuracy and placement of beacons can be viewed as a cost minimisation problem as
they need to maximise the coverage.

Environmental dependence has proven to be a great challenge while designing location
algorithms/systems. The nature of the environment influences not only the characteristics of
the sensing devices used for localisation but also the magnitude and type of measurement
errors. Hence efficient strategies are required both from hardware and from an algorithmic
perspective to deal with effects like signal fading and multipath/reflections.

1.3 Thesis Focus

This thesis focuses on formulation of localisation algorithms with the capability of fusing
readings from multiple modalities. We address the following research question.

How can multimodal localisation be achieved and what performance
improvements can it offer?

Here, “multimodal localisation” refers to some combination of observations gathered us-
ing different (heterogeneous) sensing modalities. As mentioned in Section 1.2 one of the
core assessment criterions of any location system is accuracy. While our main focus is on
improving accuracy, we also highlight the benefits multimodal localisation can have on im-
proving other desired properties such as coverage, less density of infrastructure support, and
improved update rates.∗

We hypothesise that there are plenty of ways to improve location accuracy by combining dif-
ferent modalities and, regardless of the type of data, incorporating multiple modalities would
improve the accuracy of the resulting location estimates. The methods can range from sim-
ple smoothing and filtering to fusion and tracking. Fusion typically refers to the effective use
of two or more heterogeneous sensor observations to determine location and tracking offers
the capability to provide continuous stream of location estimates, even amidst the absence
of input observations. While smoothing of location estimates can be one easy way to im-
prove the quality of the final estimate, fusion and tracking are sophisticated ways to improve
the accuracy. We illustrate by collecting different types of measurements – ranging from
simple and easily available RSSI to complex timing information (such as TOF or TDOA)
or angle information (angle-of-arrival (AOA)) from a wide variety of popular technologies
today (WLAN, ultrasound, UWB and inertial sensors) and in every instance we highlight the
benefits of smoothing, filtering, fusion and tracking. Another important aspect of the work

∗However, not all these effects have been thoroughly evaluated in this thesis.
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presented in this thesis is the evaluation of algorithms by gathering data from real deploy-
ments. Experimentation is a valuable tool for testing the performance of any algorithm as it
prevents the unrealistic assumptions and validates application with real sensors. Ultimately
location systems are to be deployed in the real-world, hence data used in algorithms must
capture the physical effects like multipath, obstruction etc. that are present. This work is
more oriented towards the formulation of algorithms that are capable of fusing multimodal
data and in comprehending the benefits by applying the concept of multimodal localisation
on a large variety of measurement types rather than performing specific optimisations (such
as, complexity or sensitivity analysis) to the algorithms themselves.

With regard to the previously mentioned areas of research and focus of this thesis, we enu-
merate in the following the main contributions of this thesis.

1.3.1 Contributions of this thesis
1. Taxonomy and survey of location systems

We begin by systematically analysing the basic principles of localisation through a
review and classification of the state of the art. From our detailed survey, it is evi-
dent that no location system is error-free and suited for all situations. For example,
pure inertial sensors suffer from drift, ultrasound sensors require clear line of sight and
magnetic sensors are affected by ferromagnetic and conductive materials in the envi-
ronment. Thus, we rationalise multimodal localisation as one of the promising ways
for improving location accuracy and robustness. Apart from improving performance
of the location system in limited measurement volumes, fusion of heterogeneous sens-
ing systems will ultimately allow people to move from place to place without loss of
location knowledge.

2. Characterisation of raw measurements

We investigate what improvements in accuracy can be achieved by fusing multimodal
data. The particular quantitative improvement in estimation that results from using
multiple sensors depends on the performance of the specific sensors involved (data
collection rates, observational accuracy), environmental effects, and the specific algo-
rithms used for data fusion. Data characterisation allows us to comprehend the benefits
of fusion. Additionally, characterising strength and weakness of the data, will en-
able appropriate choices in selecting different modalities for improving the accuracy.
One of the other merits of characterisation is that some positioning algorithms require
known error distributions to function effectively. All measurement characterisation
is performed on available sensors/technology that are used commonly (as a research
prototype or commercial product) for localisation.

3. Algorithms for inferring motion and location from WLAN RSSI

We present novel algorithms to infer movement that make use of inherent fluctuations
in the signal strength. The goal is to demonstrate how simple location algorithms like
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Centroid or Weighted centroid could benefit from knowing the motion of the device
to be located and by using history of past location readings to improve accuracy. The
solution we provide could be viewed more like smoothing of location estimates based
on motion derived from RSSI and as a result eliminates the so-called “teleportation
effect” that commonly occurs in location algorithms using RSSI data. To the best of
our knowledge, motion models are normally used only in probabilistic algorithms and
simple deterministic algorithms have not used a motion model in a principled manner.
We evaluate the performance of the algorithms against traces of RSSI data collected
from different environments.

4. Positioning algorithms using heterogeneous data

While smoothing of location estimates can be one easy way to improve the quality of
the final estimate, fusion and tracking are sophisticated ways to improve the accuracy.
We demonstrate the benefits of fusion and tracking on sophisticated data such as the
time-of-flight, angle-of-arrival and time-differences-of-arrival measurements.

• We address the benefit of fusing heterogeneous observations (pseudoranges and
angles) gathered from an ultra-wideband system. We present positioning algo-
rithms that are based on error minimisation approach and state-estimation ap-
proach using heterogeneous data collected from two different deployments –
mimicking the low-overhead deployment vs. carefully planned and calibrated de-
ployment. We demonstrate that the presented algorithms can work with perfect
and imperfect data and highlight the impact of calibration on accuracy of the lo-
cation estimates. We also consider the implications of using just one type of data
to show the significant merit of adding heterogeneous observations.

• We present navigation and tracking solutions using a combination of ultrasound
and pedestrian dead reckoning methods. The position error in a purely inertial
system increases with time and requires correction from external sources. We
address this problem by deploying ultrasound sensors as landmarks correcting
for the inertial drift. We present algorithms to support tracking and navigational
guidance. A thorough evaluation using measurements gathered from real deploy-
ments is performed.

1.4 Thesis Overview
In the next chapter we present our taxonomy and describe the basic principles in localisation.
We then explore the current trends in commercial products and research in the area of locali-
sation and provide motivation for the topic addressed in this thesis. This chapter corresponds
to Contribution 1 and is an expanded version of a paper published as [8]†

Research in localisation is tightly coupled to the requirements from applications. In
Chapter 3 we set the scene by choosing three specific applications covering both infrastructure-
based positioning and ad hoc-based positioning systems that are of direct relevance to the

†For author’s publications, refer to page 173 of this thesis.

10



1.4 Thesis Overview

work presented in this thesis. We show how our presented taxonomy can be applied to iden-
tifying the requirements of the three chosen applications.

We highlight the importance of characterisation of raw measurements through our analy-
sis performed in Chapter 4 – 6 which corresponds to Contribution 2.

Chapter 4 addresses algorithms to detect movement by leveraging existing WLAN in-
frastructure. We illustrate the benefit of smoothing and give detailed methodologies on how
we achieve better accuracy by incorporating a motion model into common deterministic al-
gorithms. This corresponds to Contribution 3. This chapter subsumes five publications
[1,4,5,6,7].

Chapter 5 and Chapter 6 focus on positioning algorithms that are capable of fusing het-
erogeneous data which corresponds to Contribution 4. Specifically, Chapter 5 deals with
the formulation of positioning algorithms to work on heterogeneous data (pseudoranges and
angles) gathered from an ultrawideband system. This chapter is joint work with Lancaster
University and has been published as [2].

Chapter 6 addresses formulation of navigation and tracking algorithms using a combina-
tion of inertial sensors and ultrasound sensors. A part of this chapter has been published as
[3] and is a result of joint work with Lancaster University.

Finally, Chapter 7 presents the conclusions that can be drawn from this research and
briefly discusses possible directions for future research.
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CHAPTER II ∗

A Taxonomy and Survey on Location
Systems

Localisation is a classical problem and has been studied widely in many different domains
resulting in a bewildering number of location systems exhibiting different characteristics.
This chapter defines a taxonomy by examining issues involved in the design and evaluation
of location systems. We then survey a variety of location systems and discuss the basic pa-
rameters such as technologies and methods used to estimate location, achievable granularity,
the update rates they provide, their cost in terms of the device being localised as well as the
infrastructure required, and their privacy implications. The objective is to understand the
underlying principles of a variety of approaches used to gain location-awareness, to compre-
hend the many tradeoffs involved in designing location systems and to explore the current
trends in commercial products and prominent research in this area. To end, we rationalise
multimodal localisation as one of the promising ways to go for improving the performance.

∗This chapter is an expansion of the paper published with the title, Towards Smart Surroundings: Enabling
Techniques and Technologies for Localization, In the Proceedings of the International Workshop on Location and
Context-Awareness (LoCA), co-located with Pervasive, Munich, Germany, May 2005 [138].
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2.1 Definition and Preliminaries
In this section we overview the basic definition and concepts. The conventions used here are
important as they form the basis for what comes later in this thesis.

Localisation and Tracking:

Localisation (synonymously location estimation, location sensing, positioning)∗ and tracking
are terms that are used widely in literature. Although they represent similar concepts, there
are subtle differences between the two. Location estimation is referred to techniques enabling
a mobile or static object/node/device to answer the question “Where am I?”. This means that
the object needs to find out its location relative to the environment in which it is present. It
might be relative to a map or to another node, or to a global coordinate system. Tracking
is often coupled to location system where the computation is done centrally. The tracking
system can monitor or track objects that are being localised there by providing a continuous
stream of location estimates. In contrast, positioning enables an object to be located at an
instance of time. Both tracking and positioning systems are implicated for issues such as
scalability and privacy. An example of a tracking system is the Active Badge [186] and
Active Bat systems [80]. GPS positioning comes under the category of positioning systems.

Location System Entities:

The entities enabling any location sensing system can be broadly classified as Infrastructure
entities and Mobile entities.

• Infrastructure entities consist of components that are present in the environment as-
sisting the location estimation. For instance, in case of a GPS positioning system,
the satellites form the infrastructure and in case of a WLAN positioning system, the
wireless access points form the infrastructure. An assumption in most of the loca-
tion system is the availability of infrastructural entities called as the anchor nodes or
synonymously called landmarks or beacons [170].

• Mobile entities are those whose location needs to be determined. In most cases, mobile
entities are either tag or marker-based. GPS receivers are examples of mobile entities.
It is possible that the moving device acts either like a transmitting device initiating the
location estimation process or as receivers when the infrastructure components act like
a transmitting source. However this is purely dependent on the type of architecture and
requirement from the application.

The presented two categories can also vary among different location systems. While some
location systems like GPS [152] and Cricket [160] use both the infrastructure and mobile
components, certain other location systems like some of the camera tracking systems perform
the estimation in an unobtrusive manner, meaning that the object wishing to be located, does
not need to carry a tag or any markers. This might on one hand be advantageous, while on
the other hand it also intrudes the privacy.

∗Positioning can actually refer to the actual position (in terms of coordinates) while location often represents
symbolic location like room, building. We, however, do not make any distinction here and use them interchangeably
throughout this thesis.
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In some cases, there are location systems that use only the mobile entity, without the usage
of infrastructural support. Those systems can be grouped under the category of autonomous
positioning systems. Inertial sensing systems are an example. Such systems are highly useful
in disaster recovery applications in particular as assuming the presence of an infrastructure in
the advent of fire or an earthquake is not a realistic assumption. In mobile robotics and virtual
reality applications autonomous positioning systems which are capable of locating itself and
the creating the map of environment are popularly called SLAM, Simultaneous Localisation
and Mapping systems.

2.2 Taxonomy
Researchers have classified location systems based on a number of aspects. Unlike the earlier
presented taxonomies that are based on evaluation properties [89, 138] or based on functional
methods [101], the taxonomy we present here includes both methods and observed spatial
phenomena used to compute the location and the evaluation properties used to assess the per-
formance and design of any location system. We build our taxonomy based on the following
eleven criteria listed with definitions in Table 2.1. In this section we explain in detail our
eleven defined classifications below (one may note that it is possible to sub-categorise them
further).

Criterion Definition
1. Dependency Support/no support from the infrastructure
2. Coverage Size of the deployment area
3. Range Range of beacons
4. Architecture Whether locatable acts as a transmitter or receiver
5. Computation Where the location computation is performed
6. Output representation Type of location provided
7. Object association Use of marker/tags for localisation or not
8. Measurement type Type of gathered observations
9. Technology used Type of the modality used
10. Estimation method Method for predicting locations from the observations
11. Performance measure Properties used to evaluate the location system

Table 2.1: Criteria used for the taxonomy and their definitions.

1. Dependency

Any location system can be broadly categorised into either infrastructure-based or ad hoc-
based positioning methods depending on the type of entities that form the system (as ex-
plained before). Infrastructure-based systems are those that require support from the devices
present in the infrastrucure to aid the location estimation process. Infrastructure-based loca-
tion systems use anchors/beacons placed at known points in the environment to determine
the positions of other objects in that environment. On the other hand, ad hoc-based meth-
ods facilitate autonomous positioning capability. The typical use case of infrastructure-based
positioning systems include: tracking of pallets within warehouses, finding colleagues in a
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work environment, for logistics and transportation, etc. while ad hoc positioning systems are
more desirable for applications such as disaster recovery, emergency response, etc.

2. Coverage

Coverage describes the size of a location system’s deployment or working area. Coverage
can be broadly classified as indoor and outdoor, or can be sub-classified as building, campus,
city, etc. Some of the systems are limited to this coverage because they assume the installation
of a special infrastructure or must have knowledge about the physical layout of the building
and beacon information. Scale is also another term to represent coverage.

3. Range

Closely related to coverage is the range. Any location system can have a good coverage only
if they are within the range of a beacon. We categorise them as short-ranged, medium-ranged
and long-ranged. By short-range, we mean anything less than 10 m, medium-range varies
between 10-100 m and anything above is long-ranged. Systems with short-range beacons
have difficulty in covering wide-area.

4. Architecture

It is possible to have two different location architectures – active and passive. In an active
architecture, the transmitter is attached on the object that needs to be located and period-
ically broadcasts messages. Receivers are deployed in the infrastructure to listen for such
broadcasts and estimate the location of the transmitting device. In contrast, in the passive
architecture, the role of transmitting and receiving devices is reversed. The beacons are de-
ployed at known locations and periodically transmit their location to the mobile device to
estimate its distance to every beacon that it hears and to estimate its location. The infrastruc-
tural beacons that are deployed for other purposes (e.g. communication) that are now being
utilised for positioning purposes can fall under either active or passive architecture depend-
ing on the beacon’s role of acting as a transmitter or a receiver. Examples include GSM
base stations, WLAN access points etc. The architecture of a location system influences its
scalability, and user privacy, ease of deployment and device-tracking performance. Active
architectures are particularly weak in terms of preserving user privacy as the infrastructure
can track the users.

5. Computation

It is also possible to categorise location systems based on where the actual computation is
performed as centralised, distributed or localised. Synonymously, network/node localisation
is described in some cases in sensor networking [105] and cellular-based location systems.
The method of computation influences the location system’s scalability, and user privacy,
ease of deployment and device-tracking performance.

6. Output representation

Output representation typically denotes the type of location information provided. As High-
tower [89] defines, location representation can be either absolute or relative or can provide
physical or symbolic location information. Absolute location systems are those which use
the same coordinate system for every device. GPS is a classic example under this category
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which describes the position of all the GPS receivers in terms of latitude, longitude and alti-
tude. In contrast, relative location systems are characterised by different coordinate systems
for different mobile devices. Two devices placed at the same location may provide different
readings depending on which frame of reference is used. Translating between relative and
absolute location estimates can be performed if knowledge about the relationship between
both coordinate systems is available. Physical and symbolic systems classify location as a
description of place. Physical location (e.g. latitude/longitude) is equivalent to the concept
of position while symbolic refers to location description in human understandable form (e.g.
near the coffee room).

7. Object association

As defined by Ward [189], location systems can be classified based on method of sensing as
tagged and untagged systems. Tagged or marker-based systems (either passive or active) are
associated with an object, thus allowing objects position to be determined, while untagged
systems allow to estimate the position of the objects directly. Tags are active or passive
objects which are designed to emit or display a known pattern which can be detected by
the location system’s sensors (e.g. includes ultrasound or UWB transmissions and barcodes).
Although tagging objects does increase setup complexity, as all objects that are to be tracked
need to be augmented, it does have some benefits. By augmenting the objects, two objects
that might otherwise look identical can be individually identified. Also, it generally decreases
the amount of computational power required for recognition and tracking. Untagged systems
are those which do not require augmentation of locatables and are thus unobtrusive. An
example of this is a camera-based tracking system that employs facial recognition.

8. Measurement type

All location systems are based on some models from the physical world. The process of
finding a location needs to utilise relationships between the position and physical properties
of the space. There are different types of measurements such as angles, distance, time, signal
strength, connectivity, etc. We outline some of the most common observation types utilised
in location systems in Section 2.3. Measurements† can be grouped under two categories –
range-based and range-free. Range-based schemes make use of certain specialised hardware
to infer the spatial relationship between the object that needs to be located and the infrastruc-
tural components. On the other hand, range-free schemes do not use specialised hardware,
but make use of other metrics like connectivity and signal attenuation to infer distance.

9. Technology used

Location systems need to have some kind of physical media to establish spatial relationship
and compute location or position from the observed phenomena. Most widely used type of
technology are infrared, ultrasound, radio, optical, electromagnetic. Section 2.4 describes
them in more detail, listing each of technology’s merits and demerits.

†Throughout this thesis, measurements, data and observations are used interchangeably.
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10. Estimation methods (Localisation algorithms)

A location estimation process needs to combine the technology and the observation (or mea-
surement) model to estimate the location. For a majority of the measurement types ‡ typically
one of the following three methods are used to estimate location. The first approach uses a
simple geometric model to calculate intersection of circles (range), lines (angles) or hyper-
bola (pseudoranges). These simple algorithms do not account for measurement error and
cannot make use of optimal redundant data which overspecifies the solution. The second
approach is based on optimisation algorithms that are specifically designed to find a solution
minimising the total error between the collected data and the location estimate. However,
they do not make use of past estimates in predicting future estimates. State-estimation algo-
rithms iteratively combine the previous estimate of the state with the observed measurement
type. We detail the prominent estimation methods used in Section 2.5.

11. Performance measure

A location system can be evaluated in numerous ways. It can primarily be evaluated based
on the accuracy of its estimates, but other properties such as high update rate, support for
locating mutiple objects, latency, privacy awareness, cost (computation, maintenance, setup,
calibration, etc.) are also of importance to many applications. We list the various perfor-
mance parameters in detail in Section 2.6.

Note, that it is possible to have a mix of features from the presented taxonomy. For instance
the system with the centralised architecture is the one which facilitates tracking easily.

‡TOA,TDOA, RSSI or AoA
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2.3 Measurement/Observation Type
Range-based

The ranging technology forms the heart of any range-based location system. There are sev-
eral range-based techniques such as time-of-flight (TOF), time-differences-of-arrival (TDOA),
angle-of-arrival (AOA), and received signal strength (RSSI). The TOF and TDOA make use
of signal propagation time for finding the range or distance. AOA uses angular estimates
instead of range/distance estimates. Angles can be estimated using rotational directional
beacons or by phased array antennas [169]. RSSI makes either theoretical or empirical cal-
culations to convert the signal strength measurements to distance estimates or can employ
fingerprinting-based solutions.

• TOF: The TOF measurements are employed on signals that propagate at the speed of
light or speed of sound. In many location systems, the receivers detect the TOF of the
incoming signal. If the receiver knows the precise time of transmission (tt) of the signal
and the speed of the signal through the environment (v), it is possible to determine the
distance between the receiving device and the transmitting device using the following
relation:

d = v(ta − tt) (2.1)

In practice this technique can only be used if the nodes/sensing devices are equipped
with fast clocks capable of nanosecond accuracy. In addition there should be synchro-
nisation between the transmitting and receiving entities. Typically the receivers do
not know the precise time of transmission of the signal from the transmitting device.
Achieving synchronisation of the transmitting and receiving entitites requires expen-
sive and power-hungry circuitries at the transmitting device. If synchronisation is not
feasible with high accuracy, estimate of the range can be obtained by measuring the
round-trip time of flight. However, this also requires a precise evaluation of the time
used by the target node to process the message and send a reply back to the transmitter.
The use of faster clocks increase the cost of the hardware and power consumption as
well.

• TDOA: Pseudoranging using TDOA is more attractive mainly because there is no
need for precise synchronisation between the transmitting and receiving entities. All
the elements of the receiver can be precisely synchronised using stable clocks at each
of the receiver which are periodically corrected via some wired or wireless reference
timing signal that is distributed to the receivers. This means that, since receivers are
synchronised an event that is determined by one receiver as occuring at time t, it would
then be considered by other receivers as occuring at the same time. It is then possible
to obtain the information about the position of the transmitting device by comparing
the differences of the signals time-of-arrival at multiple receivers. Supposing a signal
was transmitted at an unknown time tt and received at times ta1 and ta2 at receivers 1
and 2 respectively. Then the difference between the distances is calculated using the
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following relation.

d∆12 = v(ta1 − tt) − v(ta2 − tt) = v(ta1 − ta2) (2.2)

Note that the unknown transmission time is not required to determine the distance
difference.

• AOA: AOA-based techniques measure the direction from where a signal was emitted.
AOA requires antenna arrays lined up in accurately known patterns. In order to cal-
culate a location in three dimensions, both the azimuth angle and the elevation angle
should be measured. Note that there is need for synchronisation between receiving
entities in the AOA approach. By using a 2D antenna array, a single receiver unit can
determine the bearings of the transmitted signal in both azimuth and elevation.

• RSSI: The RSSI-based technique measures the signal power received by a wireless de-
vice. radio frequency (RF) propagation in the free space follows the Fris equation [81]
and the path loss is proportional to 1/d2, where d is the distance between the transmit-
ter and the receiver. In reality, the path loss is harder to predict since it depends on the
characteristics of the environment where the communication takes place. Despite the
unpredictability of the radio signal propagation, several researchers have used RSSI
to calculate location. The biggest advantage of RSSI over time-based or angle-based
methods is that they can be implemented on existing wireless systems with little or
no hardware changes. The modulation method, data rate and system timing precision
is not relevant. Coordination and synchronisation between the transmitter and the re-
ceiver is not required. But on the negative side, RSSI methods are highly affected by
interference and multipath on the radio channel. Therefore, the accuracy achieved is
usually much lower compared to time-based techniques. There are two ways in which
RSSI can be used to estimate location: radio propagation modeling and radio finger-
printing. Kjaergaard [101] presents a detailed review on fingerprinting methods. The
effectiveness of such solutions in real-world applications remains difficult to evaluate
since RF propagation across different environment varies greatly.

• Doppler shift: Doppler shift is a mechanism that is observed when the relational
velocities of a number of beacons change with respect to a mobile device. The beacons
can be mobile or stationary [125] but their location and velocity must be known. This
is also known as frequency-difference-of-arrival (FDOA) and is analogous to TDOA
for estimating the location of a radio transmitters based on observations from several
known points.

Range-free

Range-free algorithms overcome cost and system complexity by making use of solutions that
do not rely on dedicated hardware for measuring distance or angle. The location of each node
is estimated by exploiting proximity information. Range-free techniques employ algorithms
that calculate the distance in terms of hop count to beacon nodes [85]. The advantage of these
schemes lies in their simplicity, as sensors do not need to use TDOA, time-of-arrival (TOA),
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AOA or RSSI measurements and simpler schemes can be employed. Some algorithms that
use range-free schemes are Centroid algorithm, DV-Hop, DV-Radial, DV-bearing, Amor-
phous, Point-In-Test (PIT) and Approximate Point-In-Test (APIT) [85]. Most of these algo-
rithms are specifically designed to enable localisation in wireless sensor networks (WSN).

2.4 Technologies
The physical medium forms the heart of any location system. Depending on the required
range, propagation speed, cost, precision, bandwidth, etc. one can choose the required tech-
nology for a specific application. Most commonly used technologies are infrared-based [186,
107], ultrasonic-based [160, 26, 82], acoustic-based [70], electromagnetic-based [16], inertial-
based [199], optical-based [52], and radio frequency-based systems [157, 32]. Other tech-
nologies like using powerlines available at home are presented in [153]. Depending on
the type of frequency range used, radio frequency can be categorised into for example,
RFID [145, 126], WLAN (IEEE 802.11b) [32, 202], Bluetooth (IEEE 802.15) [130], FM
transmission towers [108], wireless telephony infrastructure such as GSM [151] and ultra-
wideband [182] (UWB is based on sending ultra short pulses typically <10 ns). In this sec-
tion, we present the most prominent technologies by outlining the principle, requirements,
advantages and disadvantages.

Infrared-based Infrared (IR) signals are light waves outside of the spectrum that is visible
to humans. Infrared signals need a direct line-of-sight, since they are blocked by walls and
most other opaque materials. Infrared signal travels at the speed of light and are useful
in applications where there is no requirement for fine-grained location data. One common
problem with infrared systems is that they will fail in case the tag is covered up by a shirt or
jacket. These systems can provide locations with room- or metre-scale granularity.

Ultrasound-based Ultrasound (US) does not operate in the radio spectrum, but uses sound
waves instead. Since ultrasound signals travel at the speed of sound (around 343 m/s), rela-
tively much slower than the RF, making precise TOF or TDOA measurements (microsecond
resolution) for ultrasound (US) signals is much easier than for RF or infrared signals which
travel at the nearly speed of light. This rate of travel makes it possible for inexpensive elec-
tronic timers to measure propagation delays of ultrasonic signals. Although the exact speed
of ultrasound is affected by environmental conditions, the variations can be modelled and the
resulting speed of sound can be predicted accurately. If the time at which the ultrasonic sig-
nal leaves a transmitter is known, then the transmitter-to-receiver distance can be calculated
directly by measuring the time-of-arrival of the signal at the receiver. An intrinsic property
of ultrasound is that it does not penetrate solid objects, such as walls, tables and doors. On
the one hand, this can severely limit the range of transmitted signals, especially in small ar-
eas, but this also means that a received signal was probably transmitted from the same room.
Therefore, ultrasound offers a reliable way to determine the current space an object is in.
A feature of ultrasound is that since it takes time to travel from a transmitting to receiving
unit, it results in a lag (typically in the order of ms) in location readings. Though this lag is
not really a problem for most of the applications, it limits the usage of ultrasound for aug-
mented/virtual reality applications on the grounds that the lag can cause motion sickness [94].
Ultrasonic location systems have the capability to provide accuracies of several centimetres
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and aggregate update rates in the tens of Hertz. The mobile tags must have line-of-sight to the
fixed receivers, similar to other tagged systems, with the exception of radio-based systems.
Broadband US systems have the capability to track multiple objects simultaneously, reduce
noise and offer higher update rates [84].

Narrowband Radio Frequency (WLAN, Bluetooth, Zigbee, GSM)-based Radio fre-
quency is very attractive mainly because the signals can pass through solid objects. Depend-
ing on the frequency used, they can be further classified as either narrowband or wideband
RF systems. WLAN, Bluetooth, RFID fall in the narrowband category, while UWB sys-
tems come under the other category. The main advantage of a location system using GSM
or WLAN signals, is that they can leverage the personal devices existing hardware, there by
limiting the cost of the tag (client’s device) and the infrastructural cost. Another inherent
advantage is the ability to pass through solid objects. In cluttered indoor environments, the
signal reflections can impose severe problems. Since the radio waves travel at the speed of
light, highly precise clocks are required to make timing of the signals precise, thus making
the RF systems utilising time quite restrictive (due to hardware cost and power consump-
tion). Most of the RF-based systems predominantly use RSSI-based methods. Location
systems based on conventional narrowband RF technology work coarsely indoors because
they are plagued by multipath distortion caused by radio signals reflected from walls, desks,
people and equipment. This can often lead to positioning errors of several metres.

Ultra-wideband-based The term ultra-wideband (UWB) in general refers to any radio
technology with a bandwidth larger than 500 MHz. However, UWB is also the name of
a standard that has recently (March 2007) been approved as an International Organisation
for Standarisation (ISO) standard [25], and refers to a high-speed data transmission protocol
operating in the frequency band between 3.1 and 10.6 GHz.

UWB radio positioning systems can be accurate to about 6 inch (15 cm) indoors because
they are much less affected by multipath distortion than conventional narrowband RF systems
(because accurate timing in the order of nanoseconds yield accurate pseudoranges and better
reflection rejection) and the position estimation is based on time-of-arrival rather than signal
strength. The advantages of UWB are its ability to pass through objects such as walls/clothing
and due to the higher frequencies, it can cope with the effects caused by multipath better than
other RF technologies. The higher frequencies lead to shorter radio pulses, making it easier
to determine which signals are correct and which are the result of multipath since the original
pulse and its reflections are less likely to overlap each other at the receiver. However, if the
direct path signal is blocked, the first arriving pulse is a reflection.

Electromagnetic-based Electromagnetic (EM) tracking devices function by measuring the
strength of the magnetic fields generated by the sending current through three small wire
coils, oriented perpendicular to one another [16]. These three coils are embedded in a small
unit that is attached to the object the system needs to track. The current has the effect of
making each wire an electromagnet when flowing through it. By sequentially activating each
of the wires, and measuring the magnetic fields generated on each of three other perpendic-
ular wire coils, it is possible to determine the position and orientation of the sending unit.
Electromagnetic systems can be accurate to a few millimetres in 3D however, they are af-
fected by large metal objects, and require calibration to achieve good accuracy in a building
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containing steel enforcements. They rely on an infrastructure of wire coils that must cover
the area of tracking and are therefore difficult to install in rooms with high ceilings and even
more difficult outdoor. The advantage is the possibility of providing hundreds of updates per
second even while tracking a number of subjects. The disadvantages include an limiting op-
erating range of 2-5 m and best results are achieved if the operating volume is an open area.
Calibration must be performed if tracking is to be accomplished in typical indoor environ-
ments, otherwise performance can be impaired by occlusions caused by furnishings, which
typically have conductive or magnetic components. These tracking units may experience in-
terference operating in the vicinity of other devices that produce magnetic fields, as well as
metal objects, such as office furniture, that disrupt magnetic fields. The systems based on
electro-magnetic (EM) are often prohibitively expensive.

Inertial-based Dead reckoning –a process of estimating one’s current position based upon
a previously determined position– has the distinct advantage of providing autonomous posi-
tioning capabilities. Inertial-based systems measure the changes in the motion of an object
being located thereby, requiring no support from the environment. Typically they use 3
axis-accelerometres and 3 axis-gyroscopes to determine the change in velocity and direction.
Integrating readings from gyroscopes once, leads to angular velocities and integrating the
acceleration twice will result in the position to be computed. They require initial position
and orientation. However, positions provided by this method will unavoidably drift over time
due to errors in measurements being integrated [66]. Hence the position error in a purely in-
ertial system increases with time and requires correction from external sources. A common
practice is to periodically use external sources to correct position estimates [165]. Typically
inertial sensors offer high update rate in the order of hundreds of hertz.

Contact-based Contact-based systems are physically limited in scope, because they re-
quire the entity being tracked to be in direct contact with the sensing device. Scalability is
a major concern for systems based on load-sensing and pressure-sensing [150]. Typically,
a matrix of load or pressure sensing cells are deployed underneath the floor tiles, and by
analysing the distribution of weight across the deployment area the object can be located.

Vision-based Location systems that process images from cameras in order to locate peo-
ple and objects are classified as computer vision-based systems. The systems, however, still
require significant computational power and resource for image processing and feature ex-
traction. Note that the algorithms used are not conventional localisation algorithms, but more
related to image processing and feature extraction. Many of the vision-based system do not
require tagging the object to be located [50]. But there exist vision-based systems with mark-
ers [35]. The major technical limitations are sensitivity to changes in lighting and ability to
track multiple objects accurately. In addition, privacy still remains a major concern and one
of the major constraints for wide-scale adoption [35, 42].
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Table 2.2: Enabling technologies.

Technology Merits Range Remarks
Infrared Components are cheap

and ubiquitous
Compact
Low power

Typical range is upto 5m Restriction to line of sight
conditions
Unusable in direct sunlight

Ultrasound Relatively slow propagation
(speed of sound)
Allows for precise
measurement
at low clock rates,
making the system
simple and inexpensive

Typical range is 3 – 10m Environmental factors
have substantial effects

Radio Frequency Better than IR in terms
of bandwidth,
cost and speed

Typical range:
Bluetooth: 10–15m
WLAN: 30–100m
RFID (passive): 1–2m
RFID (active): 10–100 m
GSM: > Tens of km

No proper propagation
model exists
Affected by multipath

DC Electromagnetic High precision
High signal propagation
speed

Typical range is 1–3m Signals are sensitive to
environment
Precision calibration
required, hence
expensive
Difficult to install

Optical High precision
Compact
Low power
No tag required
(in some cases)

Limited Range
(few metres)

Restriction to
line of sight conditions
Unusable in direct sunlight

Inertial Ad hoc positioning capabilities n/a Errors accumulate
over time
Calibration

UWB High precision and accuracy
Less affected by multipath
than the traditional RF systems
Low power

Range 100 m Expensive
Higher receiver density
than the conventional
RF systems

2.5 Location estimation algorithms
In order to calculate a location based on distance estimates (or angles/signal attenuation) us-
ing previously explained technologies and measurement types, an algorithm for location es-
timation is required. We categorise most of the location estimation methods to fall under one
of the following three categories–(i) algorithms without optimisation (simple algorithms),
(ii) optimisation or error minimisation algorithms and (iii) state estimation algorithms. By
simple algorithms, we refer to algorithms that use simple geometric properties and that do
not take measurement errors into account, and cannot make optimal use of redundant data
which overspecifies the solution. By contrast, the second approach is to use optimisation al-
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gorithms which are specifically designed to find a solution minimising the total error between
the collected data and the location estimate (i.e. the residual error). Basically, they iterate the
solution space and compute expected measurements for each estimate of the solution. The
algorithms that utilise the solution state (either current state, or current and past states) can
be grouped under the third approach of state-estimation algorithms.

Algorithms without optimisation (Simple algorithms): Figure 2.2 illustrates the working
principle of some of the algorithms that come under this category.

D1

D2

D3
( x1,y1)

( x2,y2)

( x3,y3)

( x2,y2)

( x1,y1)

( x,y)

�1

��

( x2,y2)

D1

( x1,y1)

D2

D3( x3,y3)

( x,y)

( x3,y3)

( x4,y4)

( x5,y5)

( x1,y1)

( x2,y2)

A) B)

D)C)
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D2 - D1

D3 - D1
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( x2,y2)
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Figure 2.2: Estimation methods: (A) Trilateration (B) Angulation (C) Multilateration (D)
Min-max or Bounding box (E) Hyperbolic localisation.

• Proximity measures the nearness (closeness) to a known set of points. The object’s
presence is determined using the physical phenomenon with limited range.

• Centroid estimates the geometric centroid of the beacon’s location as the estimate of
the object’s location [44]. There are variants such as smooth centroid and weighted
centroid algorithm [88].

• Scene analysis examines a view from a particular vantage point to draw conclusions
about the observer’s location [89, 109]. The scene itself can contain visual images,
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such as frames captured by a wearable camera or any other measurable physical phe-
nomena, such as electromagnetic characteristics that occur when an object is at a par-
ticular position and orientation.

• Angulation is a positioning procedure that relies on angle measurements with respect
to the known beacons. At the minimum, two beacons are required to solve for a
position–two beacons will result in four equations. If the equations are independent–
that is, the mobile node does not lie on a line joining the two beacon nodes, the sys-
tem is well-constrained and can be solved algebraically. To extend this method for 3D
positioning, a third angle i.e. elevation is required from at least one of the beacons.

• Lateration uses distances to known reference beacons to estimate the location. It is
popularly known as trilateration emphasising three distance estimates used to deter-
mine the location. The assumption here is to know the location of the reference bea-
cons. The geometry of the reference beacons are important, as they provide enough
constraints to solve the problem. For example, a collinear reference beacon arrange-
ment will not allow for disambuigation of two solutions in two dimensions, regardless
of the number of beacons.

• Min-max The main idea is to construct a bounding box for each beacon using its posi-
tion and distance estimate, and then to determine the intersection of these boxes. The
intersection of the bounding boxes is computed by taking the maximum of all coordi-
nate minimums and the minimum of all maximums [118]. The estimated position by
min-max is found to match closely with the position computed through lateration.

• Hyperbolic localisation For systems utilising TDOA measurements, intersection of
hyperbolas will result in the final location estimate as opposed to intersection of spheres
(lateration) and lines (angulation). The resulting solution might yield to multiple solu-
tions. Optimisation algorithms discussed below could be used to solve for the optimal
solution.

Optimisation or Error minimisation algorithms: Since measurements or observations
are always associated with an unknown amount of errors, algorithms offering precise so-
lutions with zero-valued residuals, a condition which is assumed by the above-mentioned
algorithms, are always not valid. Optimisations or algorithms that minimise the error are
designed to find solutions with the lowest possible residual for a given data. Basically, they
iterate the solution space and compute expected measurements for each estimate of the solu-
tion. They require model equations that are used to predict measurements, and express the
measured values in terms of unknown quantities. A common methodology here is to sum
the squares of the nonlinear equations. This method is also known as sum of squares or least
squares optimisation. They can be grouped into gradient-based or stochastic-based meth-
ods. Gradient methods involve use of derivatives to observe the rate at which an area of the
solution space converges towards the optimum solution. The gradients are followed towards
the error minimum. Some examples in this category are Method of steepest descent [159],
Newton’s method and Levenberg-Marquardt method [136]. Stochastic algorithms can be
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used for problems where the derivative of the error function is difficult or impossible to ob-
tain. Examples include simulated annealing and particle swarm optimisation. Systems like
Active Bat [188], self-calibrating tracking system from the University of Bristol [131], relate
system [82] and audio location system [93] use some form of error minimisation techniques.
The disadvantage of algorithms of this type is that they are computationally expensive [36].
Plus, the error minimisation algorithms do not make use of information obtained from previ-
ous position calculations.

State-estimation algorithms: Algorithms that utilise the device’s state (either current or
current and past states) can be grouped under state-estimation algorithms. They operate by
iteratively combining the previous estimate of the state with the observed measurements.
They basically predict the current state using a model of process dynamics and the previous
state and then correct the prediction using the current measurement. Many state estimation
algorithms exist, of which Kalman filtering [193] is the most common. Variants of Kalman
filtering and particle filtering are used as well. The Kalman filter is suitable for linear sys-
tems, however, most systems exhibit non-linearity. The Extended Kalman filter is developed
for addressing this issue. It linearises the Kalman filter by applying a first-order Taylor series
approximation to the process and measurement equations [144]. Particle filtering is an esti-
mation technique that implements a recursive Bayesian filter using a Sequential Monte Carlo
method. It is particularly good for dealing with non-linear and non-Gaussian estimation
problems. It is based on a set of random samples with weights (or particles) for representing
a probability density. It is often an alternative to the Extended Kalman filter (EKF) or Un-
scented Kalman filter (UKF) with the advantage that, with sufficient samples, it approaches
the Bayesian optimal estimate, so they can be made more accurate than either the EKF or
UKF. Welch et al. [193] gives an excellent overview of Kalman filtering and Hightower [88]
presents a thorough comparison of various Bayesian filtering techniques for location systems.

2.6 Evaluation Criteria
Location systems are evaluated based on the following criteria:

Accuracy and Precision: The key metric for evaluating a location system or algorithm is
the accuracy. Accuracy is defined as, how much the estimated location deviates from the
true location. The accuracy is denoted by an accuracy value and precision value (e.g. 18 cm
accuracy over 95% of the time). The accuracy of a location sensing system is often used to
determine whether the chosen system is applicable for a certain application. The precision
indicates how often we expect to get at least the given accuracy. For example, WLAN and
GSM localisation are applicable for wide spectrum of applications, but their accuracy has
shown to be highly variable. In other words, the distance between the actual location and the
predicted location fluctuates.

Typically quoted figures refer to either the root-mean-square (RMS) error of the system,
or the median accuracy that 50% of readings will meet. However, neither of these measures
give the system designer a good idea of what the outlying error distribution looks like, and
it is frequently these errors that determine how effective a location system is in practice. A
more reasonable way of describing the accuracy is through use of a cumulative probability
graphs showing the fraction of readings having an error less than or equal to some value. A
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Figure 2.3: Errors in localisation (a) Accuracy and (b) Precision.

typical cumulative probability graph (CDF) for an UWB system is shown in Figure 2.3 as
an example. It can be seen that 90% of readings produced by the system lie within 18 cm
of the true 2D position, and 90% lie within 60 cm vertically. Comparing data in this form
is easier to assess the usability of the location system for a particular application. It is also
important to consider whether a given location system is accurate enough for the application
in question.

Hightower [89] suggests that a more complete representation of performance characteri-
sation of any location system is based on error distributions with any relevant dependencies
such as the density of infrastructural elements. As an example ,“Using five base stations
per 300 square metres of indoor floor space, location sensing system X can accurately locate
objects within error margins defined by a Gaussian distribution centered at the objects true lo-
cation and a standard deviation of 2 metres”. In addition to its comparison value, researchers
can use a location-sensing system’s accurately described error distributions as partial input
for simulating a system.
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It should be noted, however, that accuracy is only one of the many desirable location
sensor properties and others, such as update rate and scalability are discussed below.

Geometric Dilution of Precision (GDOP): The quality of a reference beacon’s geometry
is described by geometric dilution of precision (GDOP). It is a measure of how the geometry
of the beacons affects the propagation of errors in the measurements. This metric is appro-
priate for lateration and angulation based schemes. GDOP relates the fundamental ranging
or bearing accuracy of the components of a location accuracy to its positioning accuracy at
some point in space. GDOP typically magnifies the basic ranging and bearing measurement
errors into the final accuracy of the location system. The location system should be installed
in such a way to minimise GDOP to prevent ranging and angle errors from causing large
position errors. A system with a good GDOP has a good spread of beacons along all the
axes. For instance, collinear, coplanar arrangements need to be avoided.

Responsiveness or update rate: This metric specifies how often an estimate is produced.
While this may not be important for devices that are static, it is of significant importance for
devices in motion, as this can fully reproduce the motion of the device. Most of the motion
tracking applications require the highest possible update rate to prevent motion sickness.
Tracking humans does not, however, need to be at high update rate. On the other hand, only
snapshots of the true path might be available from a system with a low update rate.

Scalability: Another important performance measure is the scalability. Scalability can
mean two different aspects – one is the coverage of a particular location system being easily
extended or scaled (e.g. by adding more rooms to an already covered area) and other aspect
is to see if the system can cope well with an increasing number of locatables (or tags) that
need to be located concurrently.

Cost: Cost can be split into costs that are associated with the setting up, installing, mainte-
nance and operational cost. We divide the cost into the following categories:

• Infrastructure cost: This refers to the time and money required to deploy and maintain
a location system. It very much relates to the coverage, although certain systems like
GPS requires tremendous amount of installation cost, when we factor to the supported
coverage, the cost becomes less.

• Tag/ client/ locatable cost: This refers to the actual tag/client/locatable cost that is
required. It essentially refers to the incremental cost of adding more devices to be
located by the system. Special purpose tags as locatables can turn out to be expensive
while, personal devices acting as locatable can be extremely cost-effective.

• Calibration cost: Knowledge about beacons and sensor imperfections can be used to
improve the accuracy of the location estimation. Device calibration is the process of
forcing a device to confirm to a given input/output mapping. Almost all the location
systems require some form of calibration.

• Power consumption: An important cost factor when running the system in a real envi-
ronment is power consumption. When scaling to thousands or millions of autonomous
small devices it is clearly not feasible to change or recharge batteries very often, thus
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energy efficiency should be a goal of any localisation mechanism meant for a large
scale system.

Privacy: An important parameter of localisation system is privacy, which should form part
of the architecture since its conception. Using localisation, it is very easy to create a Big
Brother infrastructure that tracks user movements and allows to deduce patterns of behavior.
This issue is being generally overlooked in the design of systems and considered as an after
thought only. Tracking or centralised systems are particularly weak with regard to privacy.

2.7 State of the art
This section provides the relevant state of the art in location systems most of them developed
after the advent of ubiquitous computing. They are categorised based on the type of tech-
nology they use to determine location. The field of localisation is active and vibrant, with
research in localisation continuously being developed, and market players are constantly
growing. For this reason the examples presented in this survey are not exhaustive, but are
carefully chosen to cover a wide variety of technologies that we have discussed in the previ-
ous sections.

2.7.1 Location Systems
Satellite-based Loran was the first navigation system, launched before the World War II
to employ TDOA based radio signals [152]. It was also the first true 2-D position finding
system. Transit was the first operational satellite based navigational system launched in the
year 1959 and was still in use until the early 1990s, when it was made obsolete by global
positioning systems (GPS). Transit users determine their position by measuring the Doppler
shift of signals transmitted by the satellites. Transit had several shortcomings–to avoid radio
interference, the system was limited to using five operating satellites simultaneously which
resulted in temporal coverage with periods of unavailability. Secondly, the system produced
only 2-D positions it was not usable for aircraft navigation applications.

GPS [152] is one of the oldest location technologies that provided the location of the
users in 3D. GPS is a one-way ranging system where all signals are transmitted by earth-
orbiting satellites and position estimation happens locally at the receiving units. GPS system
architecture consists of three parts: a constellation of earth-orbiting satellites that broadcast
a ranging signal, ground stations that update the satellites coordinate projections and clocks
and receiver units that use the GPS signals to estimate their position. This design makes it
possible for GPS to provide worldwide coverage and to scale to an unlimited number of users,
while at the same time preserving user privacy [120]. Accurate GPS positioning requires an
unobstructed view of at least four satellites. GPS signals do not penetrate well through walls,
soil, prohibiting its usage for positioning inside buildings, underground (e.g. mine or tunnel).
GPS signals can also be obstructed by large buildings that are typical to urban environments.
Table 2.3 shows the comparison of various outdoor geo-location systems.

GPS has now become integrated in day-to-day navigation–most of the new cars are sold
with a GPS navigation system and personal devices such as cellular phones are increasingly
being integrated with GPS chipsets. The market for GPS products and services was estimated
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System Method Coverage Dimensions Accuracy
Loran Hyperbolic Cont 2D 250 m
Transit Doppler shift Global 2D 25 m

GPS Spherical Global/Cont 3D 5-10 m

Table 2.3: A comparison of several outdoor geo-location methods based on satellites.

at C15 billion in 2001 and is expected to grow to C40 billion by 2015 [167]. It is estimated
that by the year 2020, the number of GPS chipsets will approach 3 billion [97]. Commercial
players include companies like Garmin [10] and Tom Tom [20].

Infrared-based systems The Active Badge [186] is one of the early centralised indoor
personal location system making use of infrared (IR) technology. Each person in the office
wears a badge, which emits a unique IR signal that is then gathered by the network of sensors
and collected by a master server. The information is then relayed to the visual display unit.
This was mainly used as an aid for the telephone receptionists to direct the phone calls to
appropriate persons during working time. Inherent to IR are the limited range and inability
to pass through obstacles like walls and jackets. Nevertheless it works well for the intended
application of routing telephone calls. A commercial infrared badge, the Versus Personnel
Alert Badge is marketed to hospitals to track hospital staffs and equipment [185].

Locust Swarm location systems from MI [100] uses solar powered units affixed on the
ceiling near light sources broadcasting a unique code associated with the surrounding area.
Mobile users carry wearable computers to infer their location from the received infrared
codes. Granularity is limited to the space in which the locusts are deployed.

Krohn et al. describe a small scale system to determine position and orientation of nearby
personal appliances (laptops, PDAs, etc.) towards each other [106]. The system does not rely
on any pre-installed infrastructure. Instead, one device is chosen as the origin of an arbitrary
coordinate system. Distances and angles between devices are determined. Two strategies
are presented to infer locations, a non-linear regression algorithm being the more robust one.
Using this algorithm and four devices placed in an area of 160×200 cm2, 95% of the location
estimates are accurate to 10 cm in position and 14◦ in orientation.

FoxTrax System [47] was designed to track an ice hockey puck and to enable its position
to be highlighted on screen during the televised ice hockey game. The puck emits infrared
signals that are detected by the field of view of infrared cameras. The system requires guar-
anteed line of sight. In a relatively open environment of a hockey stadium, a combination of
20 IR emitted diodes in the puck, 20 detectors in the ceiling rafts and 10 IR cameras were
required in the FoxTrax system to ensure continuous line of sight to several detectors and
several IR cameras simultaneously.

Ultrasound-based systems Compared with radio and infrared-based system, fine-grained
ultrasonic location systems typically require dense network of sensors (typically called trans-
ducers) to be installed in the environment. In Active Bat [80], the bat is attached to the ob-
jects or persons whose location has to be determined. These bat transmitters emit ultrasound
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pulses, which are received by the receiver mounted on the ceiling. A central controller coor-
dinates the transmitters and receivers. To locate a particular bat, the controller sends a unique
ID over the radio channel. When a bat detects its ID, it sends an ultrasound pulse, which
is picked by receivers in the ceiling. From the time-of-flight measurements, the system can
calculate the 3D position of a bat with an accuracy upto 3 cm. Since the Active Bat system
uses the time-of-flight information from ultrasonic pulses to determine the location of a bat,
it is vulnerable to indoor multipath and reflection effects from walls and other obstacles. The
Bat system has a degree of built-in robustness to mitigate these effects, as at least three bat
receivers must agree on a location using their multi-lateration algorithms (based on a non-
linear regression model) before a measurement is considered as valid. Ward [189] proposes
methods to eliminate measurements due to reflections and multipath. The system is reported
to work well in the middle of the rooms, it breaks down slightly when a bat is placed very
close to a large obstacle such as a wall.

Cricket [160] makes use of proximity-based lateration techniques for providing location
information. Many beacons installed at known locations advertise the identity of that space
with the use of some character string. Every device in the network has a listener attached
to it. The listeners use some inference algorithm to determine the space in which they are
currently located by listening to the beacon announcements. Each beacon sends two signals,
an RF signal carrying the location data and an ultrasound carrying a narrow pulse. Based
on the difference of arrival times, the device finds the absolute distance between the beacon
and the listener. In a similar approach, Randell et al. [163] uses four ultrasonic transducers
placed at the corners of a square on the ceiling and wired to a controller. The controller sends
an RF trigger, and then issues a pulse from each of the four transmitters in succession. A
mobile receiver unit connected to a handheld computer receives the pulses, and estimates its
location with accuracies between 10 and 25 cm. The Cricket system uses a combination of
US with RF to solve the problem of time synchronisation. This is accomplished by exploiting
the difference in the propagation speed between an RF pulse and an US pulse that are sent
simultaneously. The difference in TOF between the RF signal and the US signal is used at the
client node to calculate the distance to the beacon node. Note that the previously explained
Active Bat system uses US exclusively, and solves the time synchronisation problem by using
cables between the infrastructural nodes.

The Constellation system [68] tracks a mobile unit consisting of a 3D inertial sensor and
a number of ultrasonic sensors. Location is calculated using TOF measurements between
the mobile unit and fixed transmitters in the environment. After the initial starting position
the inertial sensors measure the location of the users current location which are periodically
corrected by making use of ultrasonic TOF measurements. An accuracy of approximately
5 mm is reported, but the mobile tracking unit, worn on the head and belt of a user, is too
obtrusive and expensive.

A system developed by Hazas and Ward [84] extends ultrasonic capabilities by using
broadband signals. This has significant advantages over the presented narrowband ultra-
sound transducers for ranging in terms of providing high update rates, reducing the signal
interference.
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Radio Frequency-based The earliest indoor location systems, such as the Active Badge,
Active Bat introduced new infrastructure to support localisation [80, 186]. Despite some
success, as indicated by commercialised products [182], the cost and effort of installation
is a major drawback to wide-scale deployment. New projects in location-based systems
research reuse existing infrastructure to ease the burden of deployment and lower the cost.
The earliest demonstrations use 802.11 access points [33, 115], and more recent examples
explore Bluetooth [130] and wireless telephony infrastructure, such as GSM [151] or FM
transmission towers [108].

• WLAN: RADAR [33] makes use of RF signals for finding the user location indoors. It
adopts radio fingerprinting to build a radio map of the building. A mobile device takes
a series of measurements and records signal strength of a single source as reading.
The accuracy depends on number of measurements points (experiments have revealed
measurement on every square meter on average is required). Then a centralised system
gathers signal strength information from multiple receivers and estimates location by
comparing the measured signal strength with the signal strength that were gathered in
the training phase, that is to say choosing the location of the training point with the
closest Euclidean distance in the signal space.

Ekahau Positioning system is a software based positioning solution that can contin-
uously pinpoint and track the location of mobile computing devices with a reported
accuracy of 1–2 m in indoor and campus environments. Ekahau technology does not
require any additional wireless infrastructure on top of the standard WiFi network [56].

• GSM:

The cellular-based location systems are broadly categorised into four types–cell-id
based, assisted-GPS, signal strength modeling (can be time-based, angle-based or sig-
nal strength-based) and radio fingerprinting. It is also possible for base stations to
perform round-trip timing for distance measurement, but this is currently not made
available to the handsets. Assisted GPS is a system intended for use with mobile
phones [53]. The telephone handset contains a simplied version of a GPS receiver.
Nearby cellular base stations supply the handset with information on the current satel-
lite signal conditions. This allows the handset to improve signal-to-noise ratio, and
to reduce the time required to resolve satellite signals. An assisted GPS handset is
accurate to 15 m outdoors and 50 m indoors. A fingerprinting approach by collecting
wide-area fingerprints of GSM signal is researched by Otsason et al. [151]. Using more
measurements usually provides more accurate results; for example, incase of the GSM
based positioning system developed by [151] RSSI measurements of up to 40 GSM
cells are used. Location systems based on cell-id, modeling approach and assisted-
GPS are commercialised. However, the fingerprinting-based approaches are still under
research.

• Bluetooth and others: Bluetooth location systems, using timing of RF signals between
cooperating nodes, are being commercialised by companies like Bluesoft [6]. Some
modifications to the Bluetooth radio and protocols are required to implement this func-
tionality.
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Pinpoint 3D-iD [157] requires proprietary base stations and tags are used to measure
radio time-of-flight. It uses an installed array of antennas at known positions to perform
multilateration. Pinpoint’s accuracy is roughly 1–3 m. The Pinpoint system measures
the round-trip TOF of a spread spectrum radio signal sent in the ISM band from a fixed
infrastructure of transceivers placed around a building to active transponders placed on
equipment.

In the SpotOn system [87], special tags use radio signal attenuation to estimate the dis-
tance between tags. The aim here is to localise wireless device relative to one another,
rather than to fixed base stations, thus allowing ad hoc localisation.

• RFID:

RFID-based systems use RFID readers, RFID tags and communication between them.
One example is the Landmarc systems [145]. Passive RFID systems infer the presence
of nearby objects using a small passive transponder tag attached to those objects. A
reader unit energises transponders in its vicinity via electromagnetic coupling, causing
the tags to respond with a radio message containing their unique identifier. The tags
are cheap and virtually indestructible but they need to be placed in close proximity
of the reader antenna to be detected. Active RFID systems use battery powered tags
which transmit signals coded with tags unique identifier. Since they do not rely on
electromagnetic coupling to provide power to the tag, they operate over much longer
ranges, but their tags are more expensive.

Aeroscout [2] system provides location using an 802.11 architecture by measuring the
time-of-arrival of packets from a set of active RFID tags to a set of location receivers.
The advantage of the WiFi-based RFID is that the tags can be detected by commercially
available wireless access points. The system consists of a set of active RFID tags
and a number of specialised location receivers (long-range RFID readers). Location
is estimated using a combination of time-of-flight based triangulation and RSSI and
reports an accuracy of 1–5m. WhereNet [198] is location system operating in the 2.4
GHz band. The active RFID tags are attached to objects to be located, and their signals
are detected by a set of receivers placed at known points.

Electromagnetic-based Polhemus Inc [16] and Ascension Technology Corp [4] are two
existing producers of state-of-the-art electromagnetic tracking systems. Many of their prod-
ucts have sub-centimetre position accuracy and sub-degree orientation accuracy. The system
operates over an area of 57 m2 and calibrated accuracy over this area is said to be 5 cm in
position and 3◦ in orientation. A maximum of 120 measurements per sensor can be made per
second. MotionStar by Ascension Technology [4] detect the position based on the same prin-
ciple and offers good accuracy and update rates. However, they are expensive and have high
power consumption and are sensitive to the presence of metallic objects in the environment.

Ultra-wideband-based Ubisense system entities comprise of ubisensors (receivers) and
ubitags (transmitting UWB pulse) at a peak update rate of approximately 10 Hz. Ubisense
[176] uses a combination of TDOA and AOA to locate people and objects with an accuracy of
upto 15 cm. Sensors mounted in the area to be monitored tracks Ubitags attached to objects
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or carried by people are then automatically tracked to provide accuracy and reliability. UWB
cope well with the multipath fading. This is because by using short pulse length the direct
path can be discriminated from echos more easily. A leading edge detector performs this
discrimination and is presented by Fontana [64]. A commercial version of their system based
on TDOA is available from Multi-Spectral Solution (MSSI).

Optical (vision)-based Using cameras to track the location of the people are increasingly
used both indoors and outdoors for security and surveillance [50]. Fixed cameras are also
used in smart environments to track people without the usage of tags or badges. One such
example is Microsoft’s Easy Living [109] which uses Digiclops real-time 3D cameras to
provide stereovision-positioning capability in a home environment. The EasyLiving Person
Tracker is limited to tracking two or three subjects in the cameras field of view, and returning
location estimates for them several times per second. The significant drawback is that the
system is not readily scalable in terms of the number of entities which can be tracked in a
given area. If the number of people increases within the field of view, it increases the scene
dynamics and make occlusions more frequent. There are also vision-based systems using
markers. The reacTIVision system [35] is software for tracking specially designed fiducials
(markers) in a real-time video stream. The system uses computation to minimise marker size
while meeting geometric constraints required to compute the location and 2D orientation of
the markers. The tag must be within the field of view of the camera for the system to work
precisely. TRIP (Target Recognition using Image Processing) has been developed by Lopez
de Ipina [52]. Users wear passive tags displaying 2D circular bar codes. Cameras in each
room capture images which are analysed to identify tag wearers in the field of view. Provided
a tag is within 3 m of a camera and is turned away from the camera at an angle of no more
than 70◦, its position can be computed with an accuracy of 10 cm. A single PC processing
images from a single camera can achieve an update rate of 16 Hz, even with many targets in
the field of view. In addition to the position, the pitch and yaw of the target with respect to
the camera can also be estimated.

Load-based Georgia Institute of Technology’s Smart floor [150] identifies people based
on their footsteps. However, this technologies negative side is the huge installation cost
and infrastructure cost. An example is the Active Floor [27]. Based on sensing pressure by
analysing the weight distribution across the floor, moving objects can be located. The authors
use Hidden Markov Model to analyse footstep patterns. Although load-sensing floors are able
to identify moving subjects reliably, their ability to track subjects on the same floor area has
not been thoroughly tested. Also, tracking is limited to subjects who walk or move along
the ground; devices of interest (such as PDAs, cameras, and computers) cannot be easily
tracked. Thus, like vision-based systems, load-sensing floors could face scalability issues
when confronted with many subjects in the same area.

Inertial-based Inertial systems have gained a lot of attention lately, with many products
emerging, XSens [199], pi-node from Philips [156] are just a few examples. The positions
provided by inertial sensors unavoidably drift over time due to errors in measurements being
integrated [66]. Despite the limitations dead reckoning is the only completely self-contained
location technique that requires no prior knowledge of the environment. The drift can be re-
duced by using shoe-mounted inertial sensors and resetting the velocity to zero at each foot-
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fall [149] and by combining the inertial measurements with data from an electronic compass
through a Kalman filter in order to avoid drift in the heading [67]. In most cases it is essential
to correct positions and headings with data from external sources. GPS is one possibility but
only for outdoor navigation with short periods of GPS outage [165]. Another possibility is
to predeploy RFID tags at known locations and use these to correct positions [201]. Indoor
location systems such as Ubisense have also been used in combination with PDR [86].

The navigation system developed by Renaudin et al. [166] for emergency responders
combines PDR with map matching in order to prevent drift. Inertial measurement units
(IMUs) on the chest and legs are used to measure movement and posture. The first rescue
team to enter the building places an RFID tag on each door frame they pass through. The
position computed by the inertial navigation system (INS) can then be corrected according
to a database of the coordinates and directions of all doors in the building. The second team
is equipped with an RFID reader and can therefore determine its positions by scanning for
each tag. Apart from providing dead reckoning solutions, inertial systems have been used
in autonomous vehicles [38], where inertial sensors are periodically calibrated by periodic
stopping.

Table 2.4 gives a global view of location technologies classified by achievable accuracy
and the possible applications. The list of applications are provided to serve as an example.

Technology Accuracy Example Possible Applications
Satellite 5-10 m GPS outdoor navigation (land, sea, air), pet tracking, tour guides
Cellular 5-50 m A-GPS emergency response, social networking
Infrared 5-10 m Active Badge asset/personnel tracking indoor navigation tour guides

nearest printer, teleporting system
Ultrasound 1-10 cm Active Bat tangible user interfaces, fine-grained services,

asset tracking, walk through video phone
Vision 1 cm-1 m EasyLiving security, surveillance, elderly care
UWB 6-10 cm Ubisense asset and personnel tracking indoor navigation emergency response etc.
Bluetooth 2-10 m BlueSoft proximity detection, navigation
WLAN 2-100 m Radar indoor navigation, tour/museum guides, social networking
RFID 5 cm-5 m LandMarc asset and personnel tracking indoor navigation

emergency response, logistics
EM 5 mm–5 cm MotionStar motion capture

Table 2.4: Summary of existing localisation systems. Accuracy as reported in [83].

2.7.2 Algorithms for sensor network localisation
Wireless Sensor Networks (WSN) [28] have appeared as one of the emerging technologies
that combine automated sensing, embedded computing and wireless networking into tiny em-
bedded devices. Although these individual enablers of WSNs are themselves not new ideas,
technological improvements, particularly in micro-electro-mechanical systems (MEMS), en-
abled their integration [58] on miniaturised embedded computers that support the concept of
the disappearing computer. Location and orientation information of objects in such networks
is useful for both services and applications. Services that are enabled by availability of lo-
cation, includes routing [122]–(geographic assistance in ad hoc routing promises significant
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reductions in energy consumption), resource management , service discovery and querying–
query nodes over a specific geographic area. Location can also be used to study the cover-
age properties of a sensor network [133]. At application level, location is required in order
to label the reported data in a sensor network without which gathered data is meaningless,
whereas position together with velocity and orientation enable tracking. Langendoen et al.
[117] reports about the 150 sensors nodes deployment in a potato field to measure the micro-
climate as part of a precision agriculture experiment. It is very time consuming to manually
determine the locations of all the nodes and is desirable for them to discover their own po-
sition. An unmanned aerial vehicle (UAV) is used to drop sensors nodes which then detect
and track passing vehicles [158]. Since the nodes are dropped from a height, only their
very approximate location is known. Each node must determine its exact position. In both
these applications knowing the location of the nodes is not the primary goal but without this
information the rest of the data is useless.

Some of the important properties needed for sensor node localisation are distributed algo-
rithms making use of connectivity information (as they are typically deployed in large num-
bers), self-organisation and computationally efficient. We describe range-free algorithms that
are used in most of the sensor network research in this section.

Range-free schemes make no assumption about validity of distance or angle information
like the range based schemes. Some examples to quote are Centroid algorithm, APIT, amor-
phous localisation and DV-Hop algorithm. In the centroid method [43], each node estimates
its location by calculating the center of the locations of all anchors (or beacons) it hears. If
anchors are well positioned, the location error can be reduced [45], but this is not possible
in ad hoc deployments. The APIT method [85] isolates the environment into triangular re-
gions between beaconing nodes and uses a grid algorithm to calculate the maximum area in
which a node will likely reside. DV-based positioning algorithms are localised, distributed,
hop-by-hop positioning algorithms [146, 147]. They work as an extension of both distance
vector routing and GPS positioning in order to provide approximate positions for all nodes in
a network where only a limited fraction of nodes have self positioning capabilities. They use
the same principle as of GPS, with the difference that the landmarks are contacted in hop-by-
hop fashion rather than a direct connection and similar to distance vector each node at any
time can communicate only with its neighbors. The amorphous method [142] is similar to
DV-hop as the coordinates of the anchors are flooded throughout the network so each node
can maintain a hop count to that seed. Nodes calculate their position based on the received
anchor locations and corresponding hop count.

An often ignored issue in ongoing research is the impact of beacon density and the place-
ment of the beacons. Self-configuring localisation systems consider beacon density as an
important parameter in characterising the localisation quality. HEAP and STROBE [44] are
dependent on density of beacons in the network.

In the convex optimisation [54] approach, the positional information is inferred from
connectivity imposed proximity constraints. Few nodes have known locations, called the
anchor nodes, and the remaining nodes infer their position from the knowledge about com-
munication links. MDS-MAP [171] is a method that makes use of connectivity information to
provide locations in a network with or without beacons (known co-ordinates). The advantage
of MDS-MAP is that it has a wide range of applicability due to its ability to work with both
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simple connectivity and range measurements to provide both absolute and relative position-
ing [171, 146]. Both convex optimisation and MDS-MAP require centralised computation.
Recently research on localisation is focused on incorporating the mobility model. Lingxuan
Hu et al. [92] use a sequential Monte Carlo Localisation method and argue by exploiting
mobility accuracy and precision of localisation are improved. Probabilistic techniques, such
as Markov modeling, Kalman filtering and Bayesian analysis can also be used to determine
the absolute location of a mobile node [112]. Fingerprinting-based methods are also applied
to sensor network localisation [128].

2.8 Rationalisation for multimodal localisation
It is evident from our presented survey that the current localisation landscape is an amal-
gamation of location systems based on a multitude of different technologies. Despite the
plethora of established location technology, there is no single location technology that may
be relied upon in all environments to provide accurate location information. Clearly “no one
size fits all” and a pervasive location system is not yet available.

In Table 2.5, we list the most prominent existing systems and how they fit in our earlier
defined taxonomy. Apart from the criterions that we mentioned in our taxonomy, we include
a column called “fusion” in Table 2.5. This essentially refers to whether there are more than
one type of information used by that specific system to compute location. From the list of
surveyed systems in this chapter, it is evident that location systems that employ only one
form of sensing all suffer inherent drawbacks. For example, pure inertial sensors suffer from
drift [66], ultrasound sensors require clear line of sight, and magnetic sensors are affected
by ferromagnetic and conductive materials in the environment and GPS systems requires a
certain amount of time to get fixed to the satellites. Figure 2.4 gives the performance char-
acteristics of the state-of-the-art location technologies that we have described thus far. As
one may note the accuracy of the location systems are well correlated with their deployment
cost– ranging from easy-to-deploy coarse-grained systems to expensive, carefully tuned, cal-
ibrated, fine-grained systems.

Fusion typically refers to the effective use of two or more heterogeneous sensor observa-
tions to determine location. The primary aim of using data fusion is to improve the quality of
the location estimates and identity of entities or to make inferences that may not be feasible
from a single sensor alone. Typical benefits include [78]–(i) robust operational performance,
(ii) extended spatial and temporal coverage, (iii) increased confidence, (iv) reduced ambigu-
ity, (v) enhanced spatial resolution, (vi) improved system reliability, (vii) increase in update
rate and (viii) reduce effects of errors in measurement.

Inertial sensors’ inherent drift can be corrected by adding an external source of informa-
tion. For instance, Foxlin demonstrated a system that is inertial based but aided by ultrasound
sensors that can make small adjustments in position and orientation [68]. GPSs’ time-to-fix
problem can solved by A-GPS systems which relieves the load of computation to servers
thus, making it faster in getting the position fix. While accuracy can be one key factor of
improvement, there are other factors, like reduction in number of beacons employed. For
instance UWB-based Ubisense system [182] incorporates both AOA and TDOA measure-
ments, thereby reducing the density of beacons to be deployed for localisation. Fusing mul-
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Figure 2.4: Performance characteristics of the state-of-the-art location technologies based
on what we have reviewed in Section 2.7 illustrating, how accuracy, coverage and cost does
not co-exists.

tiple technologies like US together with RF can solve the time synchronisation problem, for
instance Cricket systems [160] uses the difference in propagation speed between an RF pulse
and an US pulse to calculate the distance to the beacon node.

Apart from improving performance of the location system in limited measurement vol-
umes, fusion of heterogeneous sensing systems will ultimately allow people to move from
room to room in a building without loss of location knowledge and thereby truly enabling
the vision of Mark Weiser. This type of seamless operation between different areas has been
addressed in Hightower’s work [88] and has made a significant impact on the field including
commercial adoption by Intel [74], research adoption by the Placelab project [12], and com-
munity adoption through the publicly available location estimation library. Intel’s Universal
Location Framework (ULF) [74] provides mobile users with a seamless hand-off between lo-
cation services as they move their client devices between indoor and outdoor environments.
Specifically, it fuses readings from a GPS receiver outdoors with WLAN RSSI-based trian-
gulation when indoors. The process of blending different data is referred to as multimodal
data fusion and is the focus of this thesis.

The particular quantitative improvement in estimation that results from using multiple
sensors depends, of course, on the performance of the specific sensors involved (data collec-
tion rates, observational accuracy), environmental effects, and the specific algorithms used
in the data fusion estimation process. Thus, it is very important to have the knowledge about
the sensor data we are dealing with to see if the fusion do result in improvement. Hence one
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2.8 Rationalisation for multimodal localisation

of the main focuses of this work is characterising the measurements/technologies that are
most commonly used for localisation purposes. One of the other merits of characterisation is
that the positioning algorithms by themselves require to feed in error distributions to function
effectively. We detail this important step all through Chapters 4 – 6.

The primary goal of the thesis is to address the benefits of multimodal localisation, with
a specific focus on improving accuracy. We illustrate various ways to achieve this goal (on a
range of technologies) ranging from simple smoothing/averaging of multiple location read-
ings to sophisticated fusion and tracking, which has the capability to combine data from
heterogeneous sensing modalities to improve the quality of the location estimates.

Specifically, in Chapter 4 we demonstrate the effect of merging information that is ob-
tained from the same source, i.e. WLAN RSSI is used to infer motion and used for improving
the location accuracy. This could be considered as smoothing of location estimates based on
motion derived from simple and easily available RSSI and as a result eliminates the so-
called “teleportation effect” that commonly occur in location algorithms using RSSI data.
We demonstrate how simple algorithms like Centroid and Weighted centroid, could improve
performance from knowing the motion of the device to be located and by using history of
past location readings.

While smoothing of location estimates can be one easy way to improve the quality of
the final estimate, fusion and tracking are sophisticated ways to improve the accuracy. The
algorithms we describe in Chapter 4 are insufficient to handle these tasks. The goals of
Chapter 5 and 6 are to demonstrate the benefits of fusion and tracking on sophisticated data
such as the TOA, AOA and TDOA measurements. Tracking has the capability to provide
a continuous stream of location estimates, even amidst the absence of input observations.
Chapter 5 addresses the benefit of heterogeneous observations (pseudoranges and angles)
gathered from an ultra-wideband system. We specifically focus on algorithms based on error
minimisation and state estimation approach. In Chapter 6, we address the usage of ultrasound
and inertial sensing technology to provide navigation and tracking solutions. We focus on
correcting the drift in inertial sensors by deploying ultrasound sensors as landmarks and
fusing the two complementary technologies using algorithms based on a state estimation
approach.
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CHAPTER III
Application Settings

We explore localisation algorithms that use multiple sensor modalities to bring performance
benefits. To ground our work, we have chosen three specific applications. In this chapter
we show how the presented taxonomy (Chapter 2) can be used to assess the suitability of an
existing technology for the chosen application. Our taxonomy lets us create a design plan of
a location sensing system that meets the needs of an application. It essentially helps in ruling
out certain options and analysing the suitability of the others. For each of the motivating
applications that we present in this chapter, we first outline a problem statement justifying
why positioning is needed and what are the existing solutions and outline the requirements.

1. Localisation in office environments to facilitate social networking, as a way to help
coordination of people and understand social patterns. We leverage the existing wire-
less local-area networks (WLAN) infrastructure to sense motion and location with the
main motivation of building wide-area location services.

2. Transport and logistics operation (e.g. in warehouses), motivating the need for fine-
grained location information. We use ultra-wideband (UWB) as it copes with harsh
indoor environments better than conventional radio technologies.

3. Emergency response scenarios, motivating the need for ad hoc positioning capabilities.
In particular, we use a combination of inertial sensors and ultrasound sensors. The
position error in a purely inertial system increases with time and requires correction
from external sources. We address this problem by deploying ultrasound sensors as
landmarks correcting for the inertial drift.
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3.1 Application I – Location and tracking in office environ-
ments

Location technology has been explored as an enabling technology for social networking, as
a way to help people coordination and understand social patterns [5, 9]. In this section, we
briefly discuss the scenario, requirements and technologies for enabling indoor localisation
in office spaces. Typical applications within office environments could range from tracking
documents, providing navigational guidance to finding colleagues. These applications could
also be applicable to large conference arenas or exhibitions (or trade-fair) such as CeBIT [7].

Figure 3.1: Active Campus [1] includes both a buddy list tool with enhanced location infor-
mation (left) and a map-based social awareness tool (shown right).

3.1.1 Existing approaches and trends
Location systems that provide fine-grained information, such as the Bat systems [80] or
Vision-based systems [109] are typically operational within the confined area of deployment.
Recently there has been a growing interest in providing wide-area location services, that
spans larger area (e.g. city-wide or campus-wide). Projects such as Active Campus [1](shown
in Figure 3.1) aims to provide location-based services for educational networks and under-
stand how such systems are used. For instance, activeclass enables collaboration between
students and professors by serving as a visual moderator for classroom interaction. Active-
Campus Explorer uses a persons’ context, like location, to help engage them in campus life.
This trend has been demonstrated by some of the key commercial companies involvement
such as Intels’ Placelab [12], Intels’ ULF [74], Skyhooks’ Wireless positioning services [17]
and more recently, Googles’ Latitude [72]. The main motivation for building wide-area lo-
cation services is that many of the state-of-the-art systems (that we discussed in Chapter 2)
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coverage is limited to a particular room or building. Applications like location-aware instant
messaging would have to fall out if they have to be only operational within such a limited
working area.

Placelab [12] focuses on addressing this specific issue of maximising coverage and pro-
viding a low barrier to entry for users and developers. The Placelab approach is to allow
commodity hardware clients like notebooks, PDAs and cell phones to locate themselves by
listening for radio beacons such as 802.11 access points (APs), GSM cell phone towers, and
fixed Bluetooth devices that already exist in the environment. Placelab has even more am-
bitious goals by seeking to create a comprehensive location database which uses fixed com-
modity WiFi, GSM and bluetooth devices as global beacons. Skyhook Technologies [17]
developed WiFi-based positioning services, which are coupled with smart phones such as
iPhones. This essentially takes advantage of the tens of millions of WiFi access points that
exist in all major cities, consistently providing moderate location information indoors and in
dense urban areas. As a software-only implementation, Skyhooks positioning service does
not require additional specialised hardware embedded on the device or installed at the bases-
tation. Google have just released a new service called Latitude [72]. Latitude lets smartphone
and laptop users share their location with friends and allows those friends to share their lo-
cations in return. Although it cannot pinpoint accurately, Latitude can display your general
location based on information from satellites and cell towers. Latitude works on both mobile
devices and personal computers.

A wide variety of applications have been developed that utilise location-based services.
Without having to disclose their location to others, users can run navigation-oriented applica-
tions that display their location on a map, highlight local points of interest, or plot a route to
a destination based on current location (e.g. mappoint). Users that are comfortable disclos-
ing their location to their social network have access to applications like dodgeball [9] and
mModes’ Friend Finder [5] that facilitate social interactions in the physical world. Finally,
for users willing to disclose location information to institutions, useful day-to-day services
like Googles Local Search and Yahoo Yellow Pages are available to anyone with a network
connection.

Sharing location of course largely concerns privacy issues. From a privacy perspective,
many of the projects described above have an opt-in service (i.e. you have to ask to get it,
it is not provided automatically without asking your permission first) which is good. It also
gives a choice of levels of visibility. However, the privacy concerns are similar to that as
with the increasing practice of tracking mobile phones today. Apart from the obvious risks to
privacy, e.g. everyone getting to know where everyone is, that is if you care, and companies
(e.g. Googles’ Latitude) holding more information than what they have promised, finally
providing yet another vector for surveillance by government authorities.

3.1.2 Requirements, choice of technology and contributions
Clearly these kind of social networking applications, do not need to be extremely precise to
the level of centimetre, normally room-level or down to few metres accuracy can be accept-
able, as largely one needs to know around which area, building or floor the colleague/friend is
located. Many friend-finder applications use GSM-based location services offered by the ser-
vice provider [69]. For example, AT&T Wireless launched a friend finder application before
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the Cingular acquisition a few years ago, called Find Friends, that service relied on trian-
gulation to locate a subscriber, similarly Garmin devices find buddy beacon locations [69].
The resolution of both are very coarse, although the application does not require precise fine
grained location information, it would be beneficial, to get better accuracy when alternative
cost-effective solutions are viable, by leveraging the existing infrastructure. Additionally
many of these applications may also require information whether the user is moving or still
i.e. the mobility status (e.g. if a meeting is scheduled and if the friend is not yet present,
knowing his context on whether he is already moving, is likely an indication that he is walk-
ing towards the meeting area). The importance of such applications comes partly from the
architecture used for sharing the location.

From the requirements listed above and the earlier survey, WLAN technology seems to be
the best fit for this kind of application. The desire of using WLAN infrastructure particularly
to derive context (i.e. motion and location is very strong, both from the perspective of the
availability of the clients device and the infrastructure availability– nearly all the PDA’s and
laptops have built in wireless interface and there is growing number of mobile phones that
are equipped with a WLAN interface as well. Additionally, personal devices like an mp3
player are also equipped with 802.11 radios thus eliminating the cost associated with the
tags/locatables and WLAN network infrastructure has become almost ubiquitous with perfect
coverage nearly in all the important places of interest. Ekimoto et al. [57] published in 2007
reporting over a half-a million known access points mapped in the Tokyo metropolitan area.
These kind of densities offer high coverage with no additional infrastructure.

In Chapter 4 we present algorithms for motion and location inference by leveraging ex-
isting WLAN infrastructure. Our contributions include– (i) in-depth characterisation of re-
ceived signal strength (RSSI), (ii) novel algorithms to deduce motion by observing fluctua-
tions in RSSI across all the access points in range, and (iii) performance comparison using
real data against common deterministic location algorithms with and without adding motion
information.

3.2 Application II – Inventory and Logistics
The transport and logistic sector plays a major role in the world’s economy. As a business
concept, it covers the flow and storage of materials from the point of origin to the point
of consumption, including inventory management, transport, warehousing and distribution
activities. In Europe, the total turnover of the logistics sector in 2006 was estimated to
be C800-900 billion [154]. The logistics business is fundamentally all about moving the
correct goods from one location to another in the most speedy, reliable and efficient way.
It is widely accepted that the real-time location systems (RTLS) drive the penetration of
several location-based solutions in transport and logistics–including GPS, GSM, bar code for
identification, and other emerging technologies like WLAN, UWB. Several applications such
as tracking high value inventory items and personnel in warehouses, ports or manufacturing
plants require a precise location information and often in 3D, while certain other applications
such as container management or yard management requires accuracy in the order of few
metres.

The overwhelming majority of currently deployed RTLS systems use 433 MHz (e.g.
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RFCode) or WiFi technology (e.g. Ekahau, AeroScout), with location accuracy typically ex-
pressed in metres. The UWB market is very young and small, with few commercial products.
Cost and calibration, especially when compared to other alternative solutions are major fac-
tors preventing UWB to take a lead. Despite these obstacles, UWB RTLS is seen as a viable,
growing technology, primarily because it provides highly accurate location data and works
effectively indoors and outdoors. Leading commercial vendors offering UWB-based RTLS
are Ubisense [182] and TimeDomain corporation [19] a technology provider manufacturing
UWB chipsets.

Table 3.1: RTLS technology types (Asia Pacific) 2006 (adaped from: [22])

RTLS Type Wi-Fi UWB Passive IR Active

Cost $$-$$$ $$$-$$$$ $ $$$ $$$

Power Requirement High High Low: Mag-
netic Induc-
tion

High High

Battery lifespan(years)∗ 3-5 3-5 Not
required

4-7 1-2

Range Indoor
60-100m
Outdoors
100-200m

Up to 75 m 10-15 m in
and outdoors

15 m
convergence
with RF
up to 250 m

10-100m
both in
and outdoors

Accuracy 1-2 m
additional
access points
likely
required.
5-10 m
typically

Can be as
low as in
inches
typically
30 cm

5-10 m
typically

7-12 m
typically

5-10m
typically

Continous monitoring Yes Yes No Yes Yes

Table 3.1 shows the technology overview for the Asia Pacific market in 2006 [22]. With
regard to the percentage of revenues by product type, the WiFi RTLS market is expected
to contribute the largest portion of the RTLS market (during the forecast study period) as
enterprises are expected to be able to leverage on the usage of WiFi networks, which enables
them to also use other applications simultaneously. A report “WiFi finds itself in the real-time
location systems market” issued by Research and Markets in April 2006, projected the subset
of WiFi RTLS tags dropping from $60 unit price in 2006 but rapidly growing in number (two
million tags in 2010) [79]. The UWB and passive markets are growing steadily as these types
of RTLS offer distinct advantages. UWB RTLS is expected to be adopted in areas where high
level of resolution is required, such as personnel tracking, whereas passive RTLS is expected
to be widely used by enterprises that require short to medium range tracking. Passive RTLS
∗Highly variable
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is also expected to be adopted due its significantly lower overall cost compared to other RTLS
types. The IR RTLS market is also expected to grow annually, but growth is not expected
to be as significant as other RTLS technologies as this type of RTLS operates only best in
indoor environments.

3.2.1 Requirements, choice of technology and contributions
The key features required by the supply chain applications especially for tracking high value
inventory items are accuracy (fine-grained granularity, typically less than a metre) and real-
time tracking capability which essentially corresponds to systems supporting higher update
rates. From scalability point of view, the systems must have the ability to track multiple
tags at a faster rate. In most cases the deployment area is a harsh environment and hence
the technology must be robust to provide fine-grained location data, despite the deployment
area. Additionally, other requirements are: ease of system installation, impact to existing
network infrastructure, leverage existing infrastructure, battery life of tags. From the list of
RTLS solutions presented in Table 3.1 and the survey presented in Chapter 2, ultra-wideband-
based positioning technology could be a possible fit. While calibration cost can be high, the
reported accuracy from UWB vendors like Ubisense are down to 30 cm. This is mainly be-
cause of UWB’s inherent ability to cope well with multipath (in comparison to conventional
RF (as explained in Chapter 2)) and theoretically it can give high time resolution to achieve
precise ranging.

Chapter 5 addresses this topic in detail. Our contributions include–(i) characterisation
of heterogeneous observations (pseudoranges and angles) obtained from two deployments
of Ubisense (a commercial UWB positioning system), mimicking real-world vs. ideal de-
ployment, (ii) formulation of algorithms to fuse heterogenous observations (iii) a thorough
evaluation for both static and dynamic tracking (iv) showing the effectiveness of the algo-
rithm when applied to work on homogeneous data.

3.3 Application III –Emergency Response
Search and rescue is a challenging and dangerous activity. The environment is often unfa-
miliar, changing and visibility can be limited. The rescue operations are time-critical and
hence quick decision making support and close coordination within rescue teams are re-
quired. Ad hoc tracking and navigation support for emergency response is an important
and safety-critical challenge. A report on the Worcester warehouse fire, in which six fire-
fighters died, highlights the difficulty to keep track of firefighters within the building as one
of the major causes for loss of lives [30]. Fahy report [59] on fatalities in structure fires
linked 29 casualties between 1990–2000 to firefighters becoming lost inside the structure.
The application pull for new technologies to address safety of emergency responders is ev-
ident in major initiatives including fire services, fire protection agencies and relevant indus-
tries [129, 177, 200] but new research is required to tackle the problem of ad hoc tracking
and navigation. Fire accidents may cause severe damage to the existing sensing, positioning
and communication infrastructure. Many casualities are caused because of lack of communi-
cation between the firefighters and the incident commander [98]. This calls for the need for
having an ad hoc wireless network, which can be quickly set up at the disaster site to provide
a reliable communication link between the firefighters inside and the incident commander.
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There are many new technologies that can be used for enabling better communications for
first responders. Researchers at UCSD have created lightweight nodes that are called WiFi
bubbles to communicate data from the disaster scene [23, 161]. There are also other similar
works using different technologies to create disposable nodes for establishing communica-
tion capabilities at the disaster site [98]. If the same ad hoc network can provide sensing
capabilities, it could be used to relay vital data from the firefighters wirelessly. For instance
if the firefighter has stopped moving, help can be called in immediately [23, 143]. The same
network could also collect environmental information such as temperature, air quality and
visibility information on the way back using this information the firemen can be warned if
the way they entered is blocked. Lastly, knowing the location together with the status of
the firefighters helps in efficiently managing the deployment teams and navigational support
allows the firefighters find their way back when entering an unknown building with impaired
visibility [103]. Therefore, an ad hoc wireless sensor network is crucial for improving the
effectiveness of the rescue operation and for saving lives. The deployed sensor network can
be used for providing communication and environmental sensing in addition to providing
positioning capabilities. Our work focuses on providing tracking and navigational support
for the responders, and will be explained in more detail in Chapter 6.

3.3.1 Lifeline navigation
When entering a building with poor visibility because of fire, firefighters use ropes to mark
the path taken. These ropes are called lifelines (see Figure 3.2) help them to most importantly
find their way back and help other teams to take the same path. Furthermore, pulling the line
can signal people outside the fire area. While this technique works reliably in many situa-
tions, there are also a number of shortcomings that can become critical and in fact have led
to fatalities in the past. In particular, the lifeline can get stuck or be cut under doors or other
objects. It can also become entangled with furniture, railings etc. and generally it limits the
operational range. Moreover, a lifeline always offers only one retreat path and communicates
none or very little information about the firefighters to the outside. Klann [102] details on the
design of a wearable system that can provide navigational support to firefighters.

3.3.2 Requirements, choice of technology and contributions
Tracking the firefighter inside a burning building is critical for incident commanders to as-
sess the situation, to allocate more personnel assisting and aiding the rescue operation, and
to provide guidance support for the responders to find their way back to safety in low visi-
bility. Guidance may also be needed to direct responders towards victims that have already
been located by other teams. Localisation in such dynamic environment is difficult because
no infrastructure can be presumed, as it might have been partly collapsed or completely un-
usable due to the advent of fire. The ideal solution for immediate intervention is to have
an auto-deployable system that operates as a standalone system providing reliable position-
ing and communication infrastructure. The disaster that happened at the Worchester ware-
house shows that some firefighters have lost their life, while they were just few feet from the
exit [30]. So, such systems require high and fine-grained location accuracy (less than a few
metres). Second major issue pertaining to the development of such system, is the size of the
device to be deployed and the ease with which they could be deployed, as firefighters would
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Figure 3.2: Paris firebrigade training.

already be carrying around 18 to 28 kg equipment [95] and the deployment should not be too
time-consuming.

Technology Advantages Disadvantages Example
Ultra-wideband (UWB) Accuracy Deployment and calibration ThalesIPS [73]

Radio frequency Identification
(RFID)

Robust Tags or readers to be
predeployed, map layout

EPFL [166]

Inertial sensing systems (INS) Autonomous positioning
system

Large drift errors,
communication reach back

Navshoe [67]

Table 3.2: UWB, RFID, INS technologies — pros and cons.

Beauregard et al. [34] gives the following requirements for the location system in a worst
case scenario: accuracy of 1 to 2 m or room level, update rate faster than 1 Hz, range from
last known reference point of 100 to 500 m. Field studies in the Siren project [96] and the
FIRE project [177] have shown that fine-grained location is not a priority and that reliability
is more important for firefighters. Table 3.2 lists some of the possible list of technologies
for providing solution to the first responders. Applying our taxonomy to make choices for
this application, clearly the location accuracy should be fine-grained, in order to be able
to distinguish which side of the wall the responder is located. The choice of architecture
or deciding where the computation should occur is not crucial. The system must provide
reasonable update rates. Cost (in terms of tag/beacon) and privacy are clearly not a concern
when it comes to a matter of saving lives. However, the chosen system must not have high
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calibration cost. From the requirements and based on the state-of-the-art systems, clearly
we can rule out many location systems like GSM, GPS or WLAN-based. UWB systems on
the other hand provide sufficient accuracy for the intended application, but most of the state
of the art UWB systems do require an extensive amount of calibration before putting the
system to use, hence we could rule that out. Inertial sensors provide completely autonomous
capability and hence seems to be the best fit for this specific application. However, since
inertial sensors are inherently affected by drift, alternative external sources are to be used for
correcting the drift. Looking for external sources, ultrasound sensors seems to be a promising
source. Ultrasound-based positioning systems have been reported to provide fine-grained
position accuracy of upto 10 cm and orientation accuracy of 30◦ [82]. The US beacons
provide more accurate distance measurements than the dead reckoning and can correct for
drift. They also provide a multihop communication network which virtually follows the
responders and flashing lights and audible signals on the beacons can provide a fallback
guidance solution [40]. However, there is always a problem of blind spots or dead zones
where one technology seize to function. Ultrasound signals could get blocked in certain
parts of the building, or the device might lose its functionality. For instance, if a firefighter is
either out of range with a US beacon or if the beacon in proximity is not functional, inertial
navigation could then be used as a stand alone system providing positioning and tracking
functionality. In combination, the two technologies would add inherent robustness to the
system. Such a combination will also result in improved update rates, as inertial sensors have
significantly higher update rate (typically over 100 Hz [199]) than the narrow band ultrasonic
sensors.

We detail the usage of ultrasound together with inertial sensors for providing tracking
and navigation support to firefighters in Chapter 6. Our contributions include, (i) character-
isation of inertial and ultrasound data and (ii) algorithms to support tracking and guidance
(iii) thorough evaluation from data gathered from real deployments.

Application Dep. Coverage Range Tech. Meas. Arch Comp. Output rep Obj. Ass. Estimation
Social Inf In/Out Long WLAN RSSI Passive Loc. Phy/Sym Tagged Chapter 4

networks
Inventory & Inf In/Out Med UWB TDOA Active Cent Phy/Sym Tagged Chapter 5

Logistics /Long +AOA
Emergency Ad hoc In Short US TOA Active/ Cent Relative Tagged Chapter 6
Response /Med +inertial +AOA Passive

+inertial

Table 3.3: Requirements for three chosen applications derived from our taxonomy (presented
in Chapter 2). The column “Estimation” is detailed in the corresponding Chapters.

3.4 Conclusions
The progress and development in location systems have always been triggered by the needs
of the application. We have outlined three specific applications – (i) location and tracking for
social networking, (ii) inventory and logistics in warehouses and (iii) emergency response –
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that are of direct relevance to the work presented in this thesis. From the earlier presented
taxonomy we were able to create a blueprint of a location system that would meet those three
application needs. We have outlined at the end of each application, our specific contributions.

Table 3.3 and Table 3.4 summarise based on the earlier defined taxonomy the require-
ments of all the three applications. The last column in Table 3.3 corresponds to the core of
this thesis – localisation algorithms. While the chosen technologies and applications are not
exhaustive, they are representative as they cover a broad spectrum across several dimensions:
accuracy – fine-grained to coarse-grained, coverage – room-level to wide-area, dependence
– dense infrastructure to ad hoc, cost – expensive to minimal cost, and in every instance, we
illustrate the benefit of combining multiple modalities.

Required Performance Measure
Application Accuracy Update Latency Privacy Cost Scalability

Inf-cost Tag-cost Calib. cost Inf-scale Tag-scale
Social coarse medium medium yes n/a n/a low high high

networks
Inventory & fine high low no, opt-out high medium high high high

Logistics
Emergency fine high low does not n/a n/a low n/a n/a
Response matter

Table 3.4: Performance measure required by the application (as defined by taxonomy Sec-
tion 2.2).
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CHAPTER IV ∗

Inferring motion and location using
WLAN RSSI

As we outlined in Chapter 3, applications such as social-networking do not require precise
fine-grained location information. Such applications weigh more on solutions that can of-
fer cost-effectiveness and larger coverage. With this as the motivation, in this chapter we
present algorithms that can infer motion and location by leveraging the existing WLAN in-
frastructure. We first outline the contributions of this chapter, then focus on characterising
signal strength, which forms the basis for the algorithms presented in this chapter. After a
thorough evaluation of the motion detection algorithms against traces of data gathered over
a longer period of time from diverse environments, we present the effect of combining this
motion detection scheme as part of WLAN location algorithm to see the benefits of adding
this extra context. In this pursuit, we compare two existing location algorithms, the Cen-
troid and Weighted Centroid algorithm, as opposed to popularly used radio fingerprinting
based methods. We show the effectiveness of adding the motion information obtained from
our motion detection algorithm to smooth the stream of location estimates and hence show
improvements in accuracy. In addition, we present a privacy observant architecture to share
location information, where we handle the location of people as services which can be easily
discovered and used.

∗This chapter combines the following three publications: “Inferring motion and location using WLAN RSSI”
In the Proceedings of Mobile Entity Localization and Tracking in GPS-less environments (MELT), Orlando, USA,
September 2009 [141], “Sensing motion using spectral and spatial analysis of WLAN RSSI” In the Proceedings
of European Conference on Smart Sensing and Context (EuroSSC), Lake District, UK, October 2007 [139] and
“WLAN location sharing using privacy observant architecture” In the Proceedings of Communication System Soft-
ware and Middleware (COMSWARE), New Delhi, India, January 2006 [140].
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4.1 Introduction
Ubiquitous computing is emerging as an exciting new paradigm with a goal to provide ser-
vices anytime anywhere. Context is a critical parameter of ubiquitous computing. Ubiquitous
computing applications make use of several technologies to infer different types of user con-
text. The context cue that we are interested in is users’ motion being either “moving” or
“still” and location.

There are plethora of ways to derive mobility information ranging from using accelerom-
eters to specialised motion capture suits. While accelerometers and motion sensors were
once considered as an additional hardware, now with the advent of smart phones and more
sophisticated laptops, accelerometers are provided for protecting system operations and to
support the user interface (such as automatic adjustment of screen orientation). With ac-
celerometers it is still possible to generate false readings, for instance by shaking the device
when the user is still. Specialised motion tracking and motion detection systems make use
of a range of sensing technologies [66]. Although such dedicated systems typically provide
highly accurate information concerning position and even orientation they require additional
hardware, which is often unwieldy, impractical or simply not available. Theoretically it is
possible to compute motion by differentiating measured location over time, however consid-
ering the unreliability and uncertainity in the sensor data, deriving motion from location is
not always possible. Alternatively, solutions which use existing infrastructure to determine
the state of the user are gaining popularity [29, 110, 123, 174].

The desire of using WLAN infrastructure particularly to derive context (i.e. motion and
location) is very strong, both from the perspective of the availability of the clients device
and the infrastructure availability–nearly all the personal digital assistants (PDAs), laptops
have built in wireless interface and there is a growing number of mobile phones that are
equipped with WLAN as well. Additionally, personal devices like an mp3 player are also
equipped with 802.11 radios. WLAN network infrastructure has become almost ubiquitous
with perfect coverage in many important places of interest, Ekimoto et al. [57] reports over
half-a million known access points mapped in the Tokyo metropolitan area. These kind
of densities offer high coverage with no additional infrastructure. Location-based services,
using WLAN tags in settings like hospitals to track equipments and patients are currently
the trend [56, 3] and localisation using WLAN is considered as a value added application to
WLANs [33, 56].

Looking at the applicability and usefulness of motion detection, the WLAN radio by
itself can sense motion, and it can potentially be also part of the sensor ensemble to im-
prove recognition performance. Apart from inferencing activity of the user itself, it has been
showcased that such motion inference is useful for efficient fingerprinting solutions [37].
Recently movement detection was shown to adaptively switch between passive sniffing and
active scanning to allow positioning and to minimise the impact on the communications [99].
In this work, we show yet another use of incorporating motion detection as part of localisation
algorithm. The applications that are described above do not necessarily benefit from accurate
and complete information about the mobility status. For the purposes described above it is
sufficient to know whether the user is moving or not.

This chapter examines the results of several motion and location sensing algorithms that
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operate on RSSI data gathered from an existing WLAN infrastructure. The main advantages
of the proposed algorithms are: (i) deducing users context using the existing infrastructure
(WLAN) without a need of additional hardware, as it offers a pure software-based solution
and (ii) preserving user privacy, as context inference can be performed locally at the client
device.

Contributions: The key contributions of this chapter are as follows:

• A detailed characterisation of WLAN RSSI measurements, exposing a rich set of fea-
tures both in time and frequency domain to gather mobility information. Our analysis
in both temporal and spectral domain, results in a conclusion that “when a device is
moving, signal strengths of all heard access points exhibit higher variation compared
to when a device is still and the number of detectable samples from access points varies
considerably when the device is moving”.

• We present novel algorithms to infer movement that makes use of inherent fluctua-
tions in the signal strength. We evaluate the performance of the presented algorithms
thoroughly based on classification metrics such as recall and precision from annotated
traces (typically groundtruth recorded for every second) obtained over twelve hours in
total from different types of environment and with different access point densities.

• We show that how common deterministic location algorithm such as Centroid and
Weighted centroid can improve its accuracy when a motion model is included. To the
best of our knowledge, a motion model is normally used only in probabilistic algo-
rithms and such simple deterministic algorithms have not used a motion model in a
principled manner. We evaluate the performance of algorithms against traces of RSSI
data collected from different environments, with and without adding mobility informa-
tion inferred from the mobility detection algorithm.

4.2 Related work on motion sensing
In this section, we briefly outline the relevant work in methods used to sense motion.

Randell et al. [162] demonstrated the possibility of distinguishing various states of the
movement such as walking, climbing and running using a 2D accelerometer. Patterson et al.
[123] take the velocity readings from GPS measurements and infer the transportation mode
of the user, for instance walking, driving, or taking a bus using a learning model. The model
learns the traveler’s current mode of transportation as well as his most likely route, in an
unsupervised manner. It is implemented using particle filters and is learnt using Expectation-
Maximisation. The learnt model can predict mode transitions, such as boarding a bus at one
location and disembarking at another.

A promising alternative to usage of specialised hardware is to investigate what can be ob-
tained by measuring signals received from existing infrastructures (either WLAN or GSM).
Since WiFi access points and WiFi clients are ubiquitous, this technique is very attractive. In
this line, Krumm et al. [110] classified a user as either moving or still based on the variance
of a temporally short history of signal strength from currently the strongest access point.
This classification had many transitions, hence it was smoothened over the time/period with
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a two-state hidden markov model (HMM) resulting in an overall accuracy of 87%. Privacy
is enhanced compared to systems that compute context on a central server, since the context
inferences rely only on client-side data and computations.

Anderson et al. [29] use GSM cellular signal strength levels and neighboring cell infor-
mation to distinguish movement status. The classification of the signal patterns is performed
using a neural network model, resulting in an average classification accuracy of 80%. The au-
thors trained the neural network initially and demonstrated a proof of concept by executing it
in real-time on a cell phone. However, the initial training did not work in all the environments
as signal strength fluctuations were different.

Recently Sohn et al. [174] published a similar technique for detecting user’s motion using
signal traces from a GSM network. Their motion detection system yields an overall accuracy
of 85%. They extracted a set of seven features to classify the user state as either still, walking,
or driving.

Our work on motion detection algorithm is similar to the work on Anderson et al. [29]
and Sohn et al. [174], but we look into variation in the WLAN RSSI observed across several
access points as opposed to GSM signals.

4.3 Preliminaries
A premise of our work is that signal strength information provides means of inferring device
location and motion status. In this section we briefly outline the typical WLAN network
configurations and scanning methods used for gathering RSSI measurements.

WLAN Primer

WLAN can work in two different types of network configuration – ad hoc and infrastruc-
ture. Ad hoc networks are created by two or more wireless enabled devices communicating
directly with each other and are useful in creating small, dynamic networks. When operating
in infrastructure mode, the network consists of both the infrastructure entities, i.e. access
points and mobile entities, i.e. clients devices. The 802.11 protocol includes beacon frames
that are periodically∗ sent to the client device by the access point, indicating its presence.
The device can then passively learn the information from the access point (i.e. passive scan-
ning/sniffing) or alternatively, the device can initiate an active scan by sending a probe request
to the access point and waiting for the probe response frames that are sent back (i.e. active
scanning).

Sampling RSSI

The IEEE 802.11 standard defines a mechanism by which RF energy is to be measured by the
circuitry on a wireless NIC. In 802.11b/g/a, this numeric value is an integer with an allowable
range of 0 − 255, called the RSSI. 802.11 does not require that a chipset vendor use all 255
values, so each vendor will have a specific maximum value. For example, Cisco chooses
RSSI-max as 100 while the Atheros chipset uses 60 as the maximum value. These values do
not correspond to RSSI in dBm – these values are used internally by microcode on the WLAN
card and by device drivers to report the quality of the signal. The mapping between the RF
energy levels and the range of RSSI values can be done, but is vendor specific. We use the

∗The period/frequency of the frames differ, but is typically about 102 ms.
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RSSI values reported in dBm by manufacturers for the analysis presented in this chapter. All
the WLAN-based location systems make use of 802.11 radios and their supporting drivers
allow the device to scan for the nearby access points. Thus, a typical scan would return the
MAC address of the access point, the received signal strength and the SSID (as shown in the
Table 4.1) and is called a spotter†. We use an openNetCF.Net.dll library [24] for gathering
the signal strength and a sampling rate of 0.4 Hz (maximum sampling rate that is achievable
on a device operating Windows Mobile 5.0/6.0) is used.

AP BSSID SignalStrength SSID
000b5fd00de8 -75 WLAN
000b5fbcc0e0 -91 WLAN
000b5fd7f214 -88 WLAN
000b5fd00d2e -82 WLAN
000b5fd7f1c5 -45 WLAN
000b5fd7f1d6 -61 WLAN

Table 4.1: An example of a scanning result.

4.4 Characterisation of received signal strength (RSSI)
In this section we investigate some of the properties showcased by RSSI, particularly when
the device is “still” and “moving”.

Temporal characterisation

This subsection describes how the RSSI changes over time when the user is still and moving,
both in static and dynamic environments. By static environment, we mean when the device
is placed in a relatively stable environment (e.g. by logging measurements at off-peak hours)
and dynamic environment refers to an area which is affected by moving people (e.g. a can-
teen during lunch hours). Figure 4.1 shows an example of temporal characteristics. We can
observe from the figure that only some of the access points show a clear distinction between
the “still” and “moving” periods– specifically the weaker signal strengths (RSSI <-75dBm)
do not convey any significant difference for both still and moving, hence we have used only
the stronger access points for the analysis presented here.

The main intention of logging a“still-moving-still” phase taken in a static environment
and “moving-still” phase taken in a dynamic environment is to see if the variations in the
signal strength is influenced more by the changing environment around a static device or by
the device movement. We do observe larger stability in the RSSI values for measurements
recorded both at static and dynamic environments when the device is still, in comparison to
the moving device. Also it is noticeable in Figure 4.1 that when the user is still, the dip in
the signal‡ occurs as bursts lasting for a very short duration. However, for the moving case
the variations in the signal occur more persistently. But in some cases, we do observe erratic

†Placelab terminology [12]
‡Throughout the text presented in this chapter, we use the terminology RSSI, signal strength and signal inter-

changeably.
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behavior in RSSI measurements even when the device is still, and hence it is rather difficult
to generalise these conclusions.
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Figure 4.1: This figure illustrates a “still-moving-still” phase that is measured in a static
environment and “moving-still” phase measured in a dynamic environment over a period
of four minutes. Each of the lines represent signal strength received from a specific access
point.

But more importantly, we observe a lot of variations in the number of samples received
within a particular observational window (e.g. window of eight samples) as shown in Fig-
ure 4.2. It is particularly interesting to note that, at a fixed location the number of signal
strength samples received from the same access point over a window of reading fairly re-
mains closer to 85% on an average. This is reasonable, as in one scan we typically do not
hear all the access points, so one or two missing signal values is still relatively acceptable
when the device is still. As opposed to this, in the case of moving, the number of signal
strength samples received from the access point varies as the number of access points de-
tectable at a place varies greatly as the user moves. Each of the bins in Figure 4.2 represents
the average result of the number of samples seen from all the detected access points over all
windows of eight samples from one distinct log. In total for still and moving, we collected
over ninety different logs with average duration of log spanning for about seven to eight
minutes.

Spectral characterisation

In this subsection we look at the spectral characteristics of RSSI measurements. The schematic
representation of how a signal looks in time and frequency domain is illustrated in Fig-
ure 4.3(A). As a rule of thumb, the more concentrated the time domain, the more spread out
the frequency domain. In particular, if we “squeeze” a function in time, it spreads out in fre-
quency and vice-versa. Also Figure 4.3(B) illustrates full width at half maximum (FWHM)
that corresponds to peak width of the FFT signal at 50% peak height.

To view the frequency representation, we apply Fast Fourier Transform (FFT) to the
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(a) Still
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(b) Moving

Figure 4.2: Variations in the number of samples received when (a) Still and (b) Moving. Each
log (with an average duration of seven to eight minutes) is split into window of eight samples
and the results are averaged together.
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Figure 4.3: (A). Schematic representation of a rectangular pulse in time and frequency do-
main, short duration pulses produces a large bandwidth (B). Full Width Half Maximum,
corresponding to peak width at 50% peak height. tp is the pulse period, and fmax is the peak
at maximum. X1 and X2 are used for calculating FWHM (explained later in Section 4.5.2).

WLAN RSSI in time series. The FFT of N points xn is defined as follows:

Xk =

N−1∑
n=0

xne−2πikn/N(k = 0, ....N − 1) (4.1)

where Xk is the kth coefficient of the FFT and xn denotes the nth sample of the time series
which consists of N samples and i =

√
−1. The typical syntax for computing the FFT of a

signal, FFT (xn,N), where xn is the input signal we wish to transform (RSSI in our case) and
N is the number of points in the FFT. N must be at least as large as the number of samples in
xn.

Figure 4.4 (a) and Figure 4.5 (a) presents temporal variations in the signal strength ob-
served over a short window of eight samples (approximately twenty seconds duration) from
the strongest seven heard access points when the device is still and moving. The correspond-
ing frequency domain representation is shown in Figures 4.4 (c) and 4.5 (c). It is evident
that although signal strength varies even while the user is still, this variation is reflected in
all the heard access points uniformly as there is a well defined peak with a narrow spectral
width in the frequency domain from all the access points. Although there are differences in
the Fourier amplitude from each of the heard access point, the spectral width seems to be
broader for moving cases. But when the user is moving, there is no well defined peak from
all the access points in the frequency domain indicating that variation in the signal strength
happens more often, and not in all the heard access points in the same manner. Specifically,
we observe the effect of spectral broadening from a significant number of access points when
the user is moving, resulting in a wider full width at half maximum. This phenomenon hap-
pens mainly due to two reasons: (i) the variation in the signal strength is large in case of a
moving user and (ii) the number of access points detectable varies with distance resulting in
too few received samples from the access points. This confirms that both the temporal and
spectral analysis lead to the similar conclusions but give a different view of representation.

To demonstrate the effect of changing value of N, let us compare Figures 4.4 (b) and 4.5
(b) (where N = 8) with Figures 4.4 (c) and 4.5 (c) (where N = 512). One can see that in
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(a) Temporal variations of 8 samples over a window, when the device is still
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(b) Spectral variations of 8 samples over a window, with an 8-point FFT when the device is still
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(c) Spectral variations of 8 samples over a window, with a 512-point FFT when the device is still

Figure 4.4: Temporal and Spectral characteristics of a window of eight samples of the
strongest seven access points for the case of “still”. (a) The signal taken is a subset of the
signals that are represented in still phase in Figure 4.1 for time varying between 12 – 32 s,
and corresponding FFTs in (b) and (c). For (b) and (c), the frequency scale is normalised
and shifted to extend it from −0.5 to +0.5.
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(a) Temporal variations of 8 samples over a window, when the device is moving
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(b) Spectral variations of 8 samples over a window, with an 8-point FFT when the device is moving
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(c) Spectral variations of 8 samples over a window, with a 512-point FFT when the device is moving

Figure 4.5: Temporal and Spectral characteristics of a window of eight samples of the
strongest seven access points for the case of “moving”. (a) The signal taken is a subset
of the signals that are represented in moving phase in Figure 4.1 for time varying between
66–86 s, and their corresponding FFTs in (b) and (c). For (b) and (c), the frequency scale is
normalised and shifted to extend it from −0.5 to +0.5.
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each case, the transform adheres to the same shape differing only in the number of samples
used to approximate that shape. Note that for N = 512, the number of actual signal samples
used is only 8, but the rest of the 504 samples are padded with zeros. For both the cases
(N = 8 and N = 512) the frequency scale begins at 0 and extends to (N − 1) for an N-point
FFT. Because we are only interested in the frequency amplitudes and not phases, we take the
absolute value of the complex FFT-values. We then normalise and shift the scale so that it
extends from −0.5 to +0.5, such that the FFT is symmetric around zero.

4.5 Algorithms for sensing motion
In this section we present algorithms for sensing motion. The algorithms are categorised into
time domain and frequency domain based on the observations presented in Section 4.4. All
the algorithms that we explain here are based on “thresholding” applied to a certain metric.
The details of how these thresholds are obtained is elaborated in Section 4.6.2.

4.5.1 Time domain algorithms
We use four different types of metric that we observe in the temporal domain to infer user
movement. As opposed to looking at one RSSI value, all the algorithms presented here use
RSSI observed over a window of readings (window size = eight samples). It is important
to highlight how different metrics used to distinguish user states can vary depending on the
measurement environment (indoors/outdoors). For this reason, we have represented (Fig-
ure 4.6 – Figure 4.8), traces of data captured outdoors (ranging from 0 – 300 s) and indoors
(ranging from 300 – 600 s).

AP Visibility This is the simplest algorithm as it just uses the proportion of the time that
RSSI of a particular access point is observed within the observation window. Figure 4.2
already gave an indication of its potential. The proportion of time for which each access
point is observed is calculated and then averaged together. Depending on a certain threshold
the algorithm detects the state as either moving or still. These thresholds are determined
based on the training dataset as explained later in Section 4.6.2.

Rank correlation coefficient We estimate the rank correlation coefficient using Spear-
man’s Rank Correlation Coefficient (ρ) [191]. The rank correlation coefficient between any
two measurements represents how closely the signals are ranked. It is defined as the follow-
ing:

ρ = 1 −
6 ×

∑
d2

i

n(n2 − 1)
(4.2)

where di is the difference in rank of the signal measurements and n represents the number
of measurements in the data set. ρ takes the value between −1 and 1. Ranking closer to
1 indicates that the measurements are similar and hence the user is still and when the user
is moving the ranking is lower. Figure 4.6 presents how the rank correlation coefficient
varies when the device is still and moving. This algorithm tracks Spearman’s rank correlation
coefficient between the first and the last measurement in a observation window as a metric to
distinguish between moving and still states.
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Figure 4.6: Spearman’s rank correlation coefficient when still and moving, for outdoor (left)
and indoor (right) environments. The difference in the rank correlation coefficient remains
the same for both outdoor and indoor.
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Figure 4.7: Mean standard deviation when still and moving, for outdoor (left) and indoor
(right) environments. Here we can observe a considerable difference in the Std Dev values
between the measurements logged from an outdoor and indoor environment.
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Standard deviation This algorithm uses mean standard deviation over all the heard access
points as a metric to distinguish between still and moving states. That is, within the obser-
vation window we measure the standard deviation (Std Dev) between the measurements for
each detected access point, and use the average Std Dev over all heard access points for infer-
ring the motion status. Figure 4.7 presents how the average Std Dev varies when the device
is still and moving.
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Figure 4.8: Euclidean distance when still and moving, for outdoor (left) and indoor (right)
environments. Here we can observe a considerable difference in the Euc dist values between
the measurements logged from an outdoor and indoor environment.

Euclidean distance We are interested in seeing signal strength fluctuations in Euclidean
space, in particular to see whether any signal correlation exists for spatially separated signals
for the case when the device is moving and when the device is still. The observation is based
on the same principle as fingerprinting-based location systems [33], which state that the sig-
nals observed from the access points are consistent in time but variable in space. This has
also been used as a means to distinguish motion state by using GSM radio signals [174]. Fig-
ure 4.8 illustrates the average Euclidean distance between WLAN measurements and shows
that the average Euclidean distance between WLAN measurements are proportional to the
state of the movement. When the user is still, the Euclidean distance is relatively small
(< 10), when the device is moving the Euclidean distance is higher (typically > 10). In a
generalised form, the Euclidean distance between any two measurements can be written as:

√√ n∑
i=1

(S i(X) − S i(X+C))2 (4.3)
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where i is the index of the access point used, X is the index of measurement and C is the
measurement interval, C = 1 represents consecutive measurements.

The algorithm tracks the Euclidean distance between the WLAN readings using a window
of WLAN readings, as defined by the window size. This is inspired by the work presented
by Sohn [174] for classifying motion status based on GSM data traces. Sohn et al. used
seven different features and machine learning algorithms to train and test for classifying still,
walking and driving. Since we are interested in using only a two state classification (i.e. to
distinguish between still and moving) we use Euclidean distance over a window of measure-
ments, where the values are calculated between the first and last measurements within the
observation window.

4.5.2 Frequency domain algorithms
In this subsection we present novel motion detection algorithms which are based on our
observations presented in Section 4.4.

FWHM Thresholding The input to the algorithm is the WLAN signal trace and the corre-
sponding threshold. We filtered out the signals that are weaker than −75dBm. The RSSI in
time series is converted into the frequency domain using Fast Fourier Transformation (FFT).
For calculating the full width at half maximum i.e. peak width of the FFT signal at 50%
peak height for each of the access point entries (excluding the filtered access points), we first
normalise the signal input and then find the centre index or the peak (refering back to Fig-
ure 4.3, fmax is the peak of the FFT of the input signal). Following the signal downward from
the peak, we find X1 and X2 at half the maximum amplitude. Typically, there is no value at
exactly this amplitude, hence we interpolate between the two points nearest to it on either
side. The difference in X1 and X2 essentially corresponds to the width at half maximum. For
classification, this algorithm uses the FWHM of the main peak of the FFT for a given window
of samples and median over all the access points in that window.

FWHM Count This algorithm is very similar to the previous algorithm. The algorithm
tracks how many access points have a spectral width that is exceeding a certain threshold
within the window of readings. From our earlier observations it is intuitive that a larger
spread indicates that the device is moving. The input to the algorithm is the WLAN signal
trace and the threshold for FWHM and a proportion of access points that exceeds FWHM
threshold from the list of access points observed.

The RSSI is transformed using FFT to frequency domain and FWHM is calculated as
explained above. To make a decision based on the full width at half maximum, a threshold
is set. Whenever an entry (access point) exceeds the FWHM threshold, the algorithm treats
this as an outlier and increments a counter. If the counter exceeds a certain threshold relative
to the total number of observed access points, the algorithm returns the user state as mov-
ing, otherwise it returns still. The counter indicates how many of the access points that are
detected have a spectral width exceeding the FWHM threshold.

Low-amplitude-frequency count A signal that is not varying much in the time domain
has a frequency spectrum with a narrow peak around zero and very low amplitudes at higher
frequencies. In contrast, a signal that significantly varies in the time domain has a broader
frequency spectrum, i.e. the peak around zero is wider and amplitudes at higher frequencies
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are not as low as for less varying signals. This can also be observed in Figures 4.4 and 4.5.
Based on this observation we use a metric, (low-amplitude-frequency count or LAFC)

that distinguishes between “still” and “moving”. The algorithm LAFC operates on the fast
Fourier transformed signal and effectively counts the number of frequencies that have low
amplitude (based on earlier experiments we define “ low amplitude” as less than 10% of the
maximum amplitude in the FFT, as this gave the best results). If this number exceeds a certain
threshold, the motion status is set as “moving”, and otherwise it is set as “still”. The LAFC
is determined for each heard access point within the observation window and then averaged
over all heard access points.

4.6 Performance evaluation
In this section we present the data collection process and report the performance of the pre-
sented motion detection algorithms.

4.6.1 Data collection
Two members of our research team collected WLAN network traces. Each data collector
carried an HP iPAQ pocket PC running spotter (RSSI scanning software) for recording read-
ings from nearby access points and logging them. Data collectors recorded their mobility
activities using a custom diary application running on the PDA that allowed them to indi-
cate whether they were walking, driving, cycling or staying still. Each time a measurement
of spotter was logged, the associated activity performed at that instance was recorded as
groundtruth manually (refer Figure 4.9) from the pull down menu of the logging application
to make the diary logging more accurate.

Measurement Fri May 25 12:14:44 CEST 2007

25-05-2007 12:14:45 149 Start Sequence:Waaier
25-05-2007 12:14:45 149 Motion:Moving
000136079de0,-90
000cf6164f6c,-90
00116b267fd8,-73
0001e3d43a8d,-53
0001e3da0a55,-90
00147f54a4ff,-74

Figure 4.9: Snapshot of (left) custom diary application and (right) logged ground truth with
measured RSSI readings.

Data collection was performed at common places such as the city centre (Enschede),
parking lot, university campus and indoors at the office, canteen and home. In all, the spotter
logs contained WLAN traces of about twelve hours duration with annotated groundtruth.
Approximately 50% of the logs collected correspond to stationary phase and the remaining
50% correspond to activities performed on the move which involves walking, cycling etc.
Sampling the radio environment at approximately 0.4 Hz, the twelve hour logs corresponds
to roughly 16,000 samples. The logs also include different access point densities. The least
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number of access points in the data collected was zero, this happens when no access point
is heard during a particular scan. In such cases, all our algorithms maintain the last inferred
motion status until one or more access points are heard again) including the traces collected
at home in several experiments.

4.6.2 Threshold learning
Each of the algorithms described in the previous section uses a certain threshold to decide
whether the user’s device is still or moving. As these thresholds are sensitive to several factors
(e.g., environment, hardware, operating system), we use part of our data set for learning the
respective thresholds and the remaining part of our data set for determining the classification
accuracy using the learnt threshold. We use five-fold cross validation, where a data set is
partitioned into five folds and five training and testing iterations are performed. On each
iteration, four folds are used as a training set and one fold is used as a testing set.

To illustrate our thresholding scheme, let us consider finding the right threshold for the
LAFC metric described in Section 4.5.2. The threshold is derived automatically from a train-
ing data set using the following method.

1. For each observation window in the training set, the LAFC is calculated.

2. Then, the distributions for both classes (“still” and “moving”) are determined. Fig-
ure 4.10 (a) shows an example distribution histogram. If a threshold is applied any-
where on the LAFC axis, typically some of the “moving” observations will lie on the
“still” side (in this case the right hand side) and some of the “still” observations will
lie on the “moving” side (in this case the left hand side); these are the false negatives
and false positives.

3. Our method now places the threshold at a position where the weighted sum of false
positives and false negatives is minimal. Figure 4.11 (a) shows the amount of false
positives and false negatives as well as their weighted sum as a function of the thresh-
old. For the LAFC metric, values below (to the left of) the threshold are classified as
“moving” and values above (to the right of) the threshold as “still”.

We can see that for this particular part of the data set the best threshold is 1.14 yielding
a total classification error of about 9% for the training set.

4. We then use the same threshold to calculate the classification accuracy for the remain-
ing part of the data set (i.e. the test set).

It is interesting to see how much the threshold varies among different folds that were used
in a specific testing and training fold. For purposes of illustration, we only represent the ex-
treme values in the threshold that we observed among the five different folds. Figure 4.13 (a)
and Figure 4.13 (b) provides a snapshot of how large the threshold can vary among different
training and test sets and the corresponding distributions in Figure 4.12 (a) and Figure 4.12
(b) respectively. We look into how these thresholds impact the final accuracy in Section 4.6.3.
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Figure 4.10: Distribution of low-amplitude-frequency count (LAFC-Fold 4) for “still”
and “moving” classes for a typical training data set (containing more than 12,000
samples in total).
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Figure 4.11: The amount of false positives (“still” classified as “moving”) and false
negatives (“moving” classified as “still”) as well as their weighted sum as a function
of the threshold for the LAFC metric (LAFC-Fold 4).
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(a) Std Dev- Fold 2
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(b) Std Dev- Fold 3

Figure 4.12: Distribution of standard deviation (Std Dev) for “still” and “moving” classes
for a typical training data set (containing more than 12,000 samples in total). Difference in
the extreme folds are only shown here.
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(a) Std Dev- Fold 2
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(b) Std Dev- Fold 3

Figure 4.13: The amount of false positives (“still” classified as “moving”) and false neg-
atives (“moving” classified as “still”) as well as their weighted sum as a function of the
threshold for the Std Dev metric. Std Dev fold 2 has a threshold of 3.34, while Std Dev fold 3
has a threshold of 2.86.
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(a) Comparison of the overall precision and recall
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(b) Comparison of the precision and recall for still
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(c) Comparison of the precision and recall for moving

Figure 4.14: Performance of motion detection algorithms achieved by three frequency do-
main and four time domain algorithms: FWHM, FWHM-count, Low FFT, AP Visibility, Std-
Dev, Rank, Euc. dist. over twelve hours of WLAN traces collected. The error bars indicate
the variations in the accuracy depending on which training and test sets were used in each
iteration.
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4.6.3 Results and Discussion
In this subsection, we evaluate how accurately the presented time domain and frequency do-
main algorithms can differentiate between moving and still states. Figure 4.14 shows an
one-to-one comparison in the results obtained from both time and frequency domain algo-
rithms tested against the same data sets.

In order to characterise thoroughly the classification performance, we use the metrics
precision and recall. Precision for a class is defined in Eq 4.4 and recall in this context is
defined as in Eq 4.5:

Precision =
True Positive

True Positive + False Positive
(4.4)

Recall =
True Positive

True Positive + False Negative
(4.5)

Figure 4.14 shows the precision and recall of the seven algorithms that we discussed in
Section 4.5, using five-fold cross validation for the selection of training and test data. The
classification results are averaged together for getting the final result.

The error bar in Figure 4.14 indicates the variations in the accuracy depending on which
training and test sets were used in each iteration. Relating to the difference in the thresholds
that we have observed among different folds as shown in Figure 4.13 (a) and Figure 4.13
(b), we observe the stronger variation in the error bar pertaining to the Std Dev metric in
Figure 4.14. However, looking at the LAFC metric, where we did not observe any difference
among each fold and error bars, still shows a variability in the accuracy. This highlights
that the sensitivity of a particular algorithm does not depend only on the variations in the
thresholds observed among different folds, but also depend on the underlying data itself.

Looking at the results leads to the following conclusions. The performance of the fre-
quency domain algorithms show a better precision and recall when compared to the time
domain algorithms. Low precision indicates that many false positives exist and a lower recall
indicates that many groundtruth events were missed. Among the different time domain algo-
rithms used, the Euclidean distance based algorithm performs the worst, while the remaining
three algorithms perform about the same. It is interesting to note that a simple count of the
number of access points seen achieves an overall accuracy of 85%. The accuracy obtained is
similar to the the accuracy reported by Krumm et al. [110] using an algorithm based on the
temporal variation of RSSI. Of course it is hard to make an one-to-one comparison among
algorithms used here and those available in literature, as the data used for testing is different
in both cases. But since we have performed the evaluation for data collected from different
environments and settings, we do not expect a drastic difference in the performance, when
operating on data taken in similar environments.

Comparing the different frequency domain algorithms, all the three algorithms – FWHM,
FWHM-count and LAFC based algorithms results are comparable. Another important aspect
we observed is that generally the thresholds for the frequency domain metrics are not as sen-
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sitive to external influences as the ones for the time domain metrics. Also, some of the time
domain metrics are particularly sensitive (e.g. standard deviation (Figure 4.7) and Euclidean
distance (Figure 4.8)).

The overall classification accuracy obtained with time domain algorithm (about 85% with
AP visibility, Std Deviation and Rank) is comparable to the one reported by Sohn et al.
[174](85%). Although, Sohn et al. achieved this accuracy for a three state classification
scheme and our results are for two state classification, it is interesting to note that all our
presented algorithms use only one feature as opposed to Sohn’s work where seven different
features were used to train and test data. Employing other features, as reported in Sohn et al.
might result in a significant improvement in the accuracy. This is yet to be investigated.

Investigating how well the algorithms can cope in identifying the transitions between still
and motion states, we have observed that it typically takes half an observation window for
any metric to cross its threshold between states. This is of course not surprising, because
immediately after the transition, the “old motion state” samples will still occupy the major
part of the observation window. Only after half of the observation window has actually passed
the transition, the majority of its samples will be “new motion state” samples. We therefore
interpret a classification at time t as the estimated motion status for time t− 1

2 Twindowsize where
Twindowsize is the length of the observation window.

Frequency domain algorithms, specifically the FWHM count algorithm, performs very
well for all experimental settings by achieving an overall classification accuracy of 92%,
clearly outperforming all the other motion inference algorithms. It is thus reasonable to
conclude that the scheme’s detection accuracy and performance is significant after being
tested across various settings. Fine tuning the thresholds and/or incorporating more features
together might even further increase the accuracy. The results show that we are able to
distinguish between still and moving states with a high accuracy without having to instrument
a person with any additional sensors. It is interesting to consider the performance of the
presented algorithms for different window sizes, access point densities and FFT lengths.

Effect of window size

Changing the length of the observation window impacts the results of all the presented algo-
rithms. The results are shown in Figure 4.15. In general, higher the window size, the better
the performance. However, it is important to note that higher window sizes also increases the
latency. Given the sampling rate of 0.4 Hz, changing the window size from two to sixteen
corresponds to a wait time of 2.5 to 20 s (i.e. half the observation window’s duration).

Effect of access point density

We took three non-overlapping subsets from the total log in order to test the sensitivity of
the various metrics’ learnt thresholds to the access point density. One subset contained mea-
surements collected at areas with lower access point density such as a home environment
(typically around four access points) and in some shopping areas outside of the city with
just one or two access points. On average this “sparse test set” had three access points after
removing the weaker access points. The second subset contained measurements collected in
denser access point environments such as the office. On average this “dense test set” had
nine access points after removing the weaker access points. The third subset was represen-
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Figure 4.15: Effect of different window sizes, two to sixteen.

tative for the total log, containing measurements from a variety of environments. We used
this “training set” to obtain the thresholds for the various metrics, as explained earlier in
Section 4.6.2. These thresholds were then used in the evaluation of the metrics for both the
“sparse” test set and the “dense” one.

The results are shown in Figure 4.16. It is clear that the more APs are seen, the better
the motion status classification performs. In particular, the learnt thresholds for time domain
metrics are very sensitive to this factor.

Effect of n- point FFT

Figure 4.17 shows that increasing N in an N-point FFT does not improve the accuracy results
for the frequency domain metrics for N > 16. Therefore we can safely use an N-point FFT
with a value of N = 16 (for FWHM and FWHM-count) or N = 8 (for LAFC) in order to
keep the computational cost low.

4.7 Localisation
In this section, we outline the location algorithms that operate on RSSI measurements. The
goal of our work is to demonstrate that algorithms which rely on both (i) the location of
access points and (ii) a coarse estimate of the relative distance to the access points can ben-
efit from adding motion information that we presented earlier in Section 4.5. Many of the
probabilistic approaches like the particle or Kalman filtering use an inherent motion model
to enable localisation and tracking. These algorithms work in a “predictor-corrector” fash-
ion, by weighting the filter model more heavily when the errors in the raw measurement go
higher, thereby making the final estimates more accurate. We have used a similar approach
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Figure 4.16: Effect of AP density– Sparse vs. Dense (sparse contains an average of three AP
and dense contains an average of nine AP).
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Figure 4.17: Effect of FFT width for the frequency domain metrics.
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but instead coupled to variants of the simple centroid algorithm.
WLAN-based location systems predominantly use received signal strength measured at

the mobile device to estimate location. In general, signal samples fluctuate even in static
environments. This results in unstable location estimation even while the user or the device
is still. In order to overcome errors due to instability in RSSI used for location estimation,
most positioning algorithms use some kind of time averaging to smoothen the RSSI values
and perform temporal smoothing on final estimates. In many cases temporal smoothing of
several location readings can result in better accuracy. However, the length of the history
of measurements to be used for temporal smoothing is to be chosen carefully. A smaller
history size would result in jumping of location readings taken from one reading to the next
reading can move large distances. This can be characterised as a “teleportation” effect. This
jumpiness will often result in an unpleasant experience to the users if they were to use an
application such as a buddy finder or viewing their location on a map on their mobile devices.
One way is to use the model of the building layout as part of the location algorithm so that
unrealistic jumps through walls and other obstructions, or unreasonably from one floor to
another floor in the environment could be avoided.

We incorporate the knowledge about the user state, i.e. moving or still, as a part of lo-
calisation algorithm itself. As an example, when the user state is deduced as still, all the
unwanted jumps caused by the location estimation can be ignored. When the user state is
deduced as moving, an appropriate motion model can be added as a part of the location al-
gorithm. Therefore after each location update the new location estimate can move by a max-
imum distance depending on user’s speed. In this way, many false location estimations can
be curtailed, leading to a better accuracy and resulting in location traces which are smoother.

4.7.1 Related Work
Localisation using WLAN-RSSI can be divided into modelling-based and radio mapping-
based approach. In the former, the user’s location is calculated from a radio propagation
model and beacon locations. In the radio mapping approach, a radio map of the environ-
ment if constructed during an offline phase and the radio map is used to locate the user
during an online phase. RADAR [33] is one of the earliest WLAN-based location systems.
Since then, there has been a lot of research performed around this topic. RADAR operates
by recording signal strength information from multiple base stations. It takes advantage of
two observations–firstly, the signal strength varies considerably spatially (even at smaller
distances); secondly, the signal shows a temporal stability (when the user’s device is held
stationary). Using these two observations, Bahl et al. proposed a technique called “radio
fingerprinting”. Two phases are involved in radio fingerprinting based system–offline phase
(i.e. collection of fingerprints) and online phase, where the actual location of the device is
estimated based on the RSSI measurements of access points and the knowledge of the fin-
gerprints collected during the offline phase. Obviously, depending on the density of the
collected fingerprints the accuracy of the system varies. There are two disadvantages with
this approach–first, is the lack of scalability of this technique and secondly, if an access point
in the environment is to be moved to a different place, the collected fingerprints are not valid
anymore and fingerprints have to be frequently calibrated to the changing environment.

The users’ location can also be computed by probabilistic approaches [46] or a neural
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network model [172] as opposed to the deterministic approach explained before. Joint clus-
tering [203] and Bayesian networks [113] are similar to RADAR. They all use a training
session to get many fingerprints and using them they try to predict the location. The Ekahau
positioning system [56] is a commercial system which is able to locate clients and provides
the coordinates in 3D corresponding to each client. The main positioning module is run
on the server. They report an accuracy of about 1–2 m, however it requires a considerable
calibration effort.

Horus [202] is a fingerprinting-based location system that identifies different causes of
variations of the signal strength (e.g. handling small scale variations, correlations between
successive samples etc. ) and incorporates various techniques to handle them. It has been
demonstrated to work better than normal fingerprinting-based methods [33].

However, radio map-based methods are time-consuming to construct and have to be up-
dated should there be a change or addition in the access points location. As a result many
deployments have been small, or restricted to the corridors of larger buildings. In one of
the few large-scale deployments of an RF-based location system, twenty-eight person-hours
were required to construct a radio map covering a 12,000 m2 building [77]. Robots have been
used to acquire radio maps for use in robot location system. However, such a map would not
be well suited for use in a human location system for tracking people, since it would not take
the presence of the user’s body into account.

Contrary to the radio map-based approach which requires intensive calibration effort,
modelling-based approaches have been used in several projects, most notably in Active cam-
pus [1] and Placelab [115]. Active campus [1, 75] project goals were to offer location-based
social networking services to students and was the first wide area deployment of WLAN
location system. Active Campus uses a propagation modelling-based approach, as it is not
feasible to collect fingerprints over a wider area (i.e. campus-wide) and the authors have re-
ported an average estimation accuracy of 22 m outdoors and 11 m indoors. Placelab [115],
developed by Intel, allows commodity hardware clients like laptops, PDAs and cell phones
to locate themselves by scanning for radio beacons such as 802.11 access points, GSM cell
towers and fixed Bluetooth devices. It does not involve much calibration, as information
about the access points and GSM cell towers are collected through war driving. It has been
demonstrated only for outdoor environments, reporting an accuracy of 13 to 20 m [116]. It
maintains privacy by computing the locations of the users at the client device. Placelab does
not provide a mechanism to share locations. However, it is being integrated into different
systems such as Active Campus [76], Google’s Latitude [72] providing that functionality.
For WLAN localisation using time-based techniques refer to [49].

4.7.2 Smoothing location estimates by incorporating movement model
The positioning functionality is implemented using filter chains, which represent a sequence
of calculations performed on the observed RSSI measurements. We use the spotter library
from Placelab [12] to record RSSI from neighboring access points for devices like normal PC
and laptops. To run on Windows Mobile platform, the spotter functionality from the Open-
NETCF.Net.dll library has been used. We rely on the location of the access points mapped
in 3D and other information pertaining to the access points such as the MAC addresses and
the transmit power setting of the access point. The topology of the access points could either
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be managed as a database residing in the network, or it could be a local configuration file in
order to minimise the network dependencies and maintain privacy. Obtaining this informa-
tion is easier in a university setting as they typically maintain a database of network access
points. In the literature, there exists many ways such as war driving or stumbling to obtain
the neighboring access point coordinates [114].
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Figure 4.18: Effect of α on filtering RSSI. Observing the RSSI values of each subplots, it is
clear that a higher value of α shows extreme averaging effect compared to lower values of α.

We use an exponential moving-average filter to reduce the effect caused due to the noise
and smoothen the received signal strength for the analysis presented here. Equation 4.6 shows
the formula.

RSSI f iltered = α × RSSIprev + (1 − α) × RSSIcurrent (4.6)

Equation 4.6 states the current signal strength RSSI f iltered value is a linear aggregate of
the previous signal strength RSSIprev, RSSIcurrent values and an independent weighting factor
(α). The weighting for each of the older observations decreases exponentially, giving much
more priority to recent observations while still not discarding the older observations entirely.
A lower α discounts older observations faster. The degree of weighting is expressed as a
constant smoothing factor α, a number between 0 and 1. α may be expressed as a percentage,
so a smoothing factor of 15% is equivalent to α = 0.15. Moving averaging has been used in
other related work in the area of WLAN localisation [202]. Figure 4.18 illustrates the effect
of different values of α on RSSI observed in signal readings from one access point. We use
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an α = 0.2. Of course the challenge is how to determine what exact α is required. We briefly
discuss in Section 4.8, the impact does choosing a proper α on localisation accuracy.

Localisation

The core positioning algorithm is based on a weighted centroid approach. The difference be-
tween the normal centroid and weighted centroid is that the latter introduces variable weights
for each access point. Weighted centroid uses the relative distance estimates to the strongest
access points. This is performed by assigning the location of each of the several strongest
access points a weight in the position calculation based on the relative distance between those
estimates. Obtaining absolute distances precisely between the access points and the mobile
device to be located is harder due to the multipath reflections that are predominant in indoor
environments. Hence algorithms that make use of absolute distances retrieved from WLAN
RSSI, such as those based on trilateration perform poorly, especially when the access points
are arranged in a collinear fashion.

We estimate the relative distances based on the transmit power of the access points that
are available and the RSSI values which typically correspond to the power at the receiving
end. Although the distance estimates are not accurate, it will give a clue to which access
points are closer and hence are to be used in the position estimation. Based on calculating
the approximate relative distances to access points, we do not make use of the access points
that are considerably farther. Alternatively, one could use thresholding based on RSSI to
eliminate the redundant access points. From the RSSI, we use the motion detection algorithm
that we explained earlier in Section 4.5 to detect the state of the device as either still or
moving.

Using motion information

Depending on the state, two filter chains are used appropriately:

• When the motion detection algorithm returns the state of the user as moving, we em-
ploy a motion model which smoothens the final location estimates gracefully, by pre-
venting any large movements between two different time steps. The motion model fil-
ter uses a maximum allowable distance, depending on the users walking speed within a
stipulated time frame. For instance, if the walking speed of the user is 1.5 m/s, then dif-
ference in the current location reading and the next location reading cannot be greater
than 3 m if we sample radio environment every 2 seconds. Essentially the filter checks
if the distance moved between the time between the current and the past location is
greater than this threshold limit. If the difference exceeds the set limit, the location is
updated solely based on the motion model. This essentially acts like a correction phase
i.e. the position estimated is corrected by the knowledge of motion information.

• When the user is still, ideally the user’s estimated position must remain still at the
same point. But since the signal strength varies even at static location, the estimated
location often jumps even when the device is still. We use a lesser value of maximum
allowable distances (i.e. a fluctuations of 0.2 m is permissible) for the static cases and
use a history of measurements to average the results together.
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4.7.3 Algorithms used for comparison

We compare the accuracy of the presented Weighted Centroid with motion model as de-
scribed in Section 4.7.2 to that of other position estimation algorithms with and without
adding motion information. In total we have four algorithms to compare with (i) Weighted
Centroid (with motion model) (ii) Centroid (with motion model) (iii) Weighted centroid and
(iv) Centroid algorithm.

The Centroid algorithm places the user on the geometric centroid of the strongest access
points that appeared on the current scan. Weighted centroid as we explained before assigns
specific weights to the access points based on the estimated relative distances. Centroid with
motion model essentially uses the same principle as we explained before, if the difference in
the moved distance between two timestamps are greater than a certain allowed distance, it
corrects the final estimate.

4.8 Experimental evaluation
In this section, we report the performance of the location algorithms that were described in
Section 4.7. First we outline in Section 4.8.1, the testbed used for collecting the WLAN RSSI
traces. We then summarise the performance of the location algorithms in Section 4.8.2.

4.8.1 Data collection

All the experiments to assess localisation accuracy were performed in a five-storied, Zilver-
ling building at University of Twente. Floor 2–5 has a dimension of 106 m × 14.5 m and
have a same layout with a long corridor and many rooms and has four access points that are
mounted on the ceiling and are placed in a straight line (refer Fig. 4.19b). The first floor (re-
fer Figure 4.19a) has a different layout and spans along north-south side as well with a few
additional access points covering the north and south side of the floor. The transmit power
of most of the access points were either 50 mW or 30 mW. The measurements were taken
from floor 4 (east side) till the floor 4 (west). Through the flight of stairs located at the ex-
treme west, the data collector traversed to floor 3, from west end to east end. This continued
until floor 1, where the data collector traversed the other hall way (north-south side) as well.
Through the flight of stairs repeated the same trajectory all the way until floor 5 and finally
reached the starting point on floor 4. The data collector walked at a normal walking pace of
1.3-1.5 m/s. Data was recorded as one trace lasting approximately twenty minutes, resulting
in about 350 RSSI readings (with an average difference in time-step between consecutive
samples of 2.5 seconds between). Out of the collected spotter measurements, fifty access
points were detected in total in the entire trace and our database had only twenty-eight access
points location mapped. So among those mapped twenty-eight, few of them were taken for
the position estimation and the rest of the twenty-two access points were not used in the es-
timation process. Our sampling time was limited to the Windows Mobile platform that was
running on the mobile device. Since the same data was to be tested with different algorithms,
we logged the measurements and all the analyses were done offline.
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Figure 4.19: Testbed used for collecting WLAN RSSI traces is a five-storied, Zilverling build-
ing, University of Twente.
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Groundtruth

It is rather difficult to obtain an accurate groundtruth to this scale, covering the whole build-
ing. The normal procedure would be to adopt a map clicking application which can exactly
match the readings collected to the actual place. This process should work reasonably well
but with small amount of error when used on a laptop. Since we used the smaller device
the granularity of the recorded location would have been worse because of the limited screen
size on the device. Hence, we followed a slightly different approach. The user was logging
measurements using the same diary application as used for collecting RSSI traces for evalu-
ating the motion detection algorithm. At crucial points in the path, such as corners and stairs,
the motion status was recorded so as to log insertion points where we manually inserted
the corresponding positions and we used an interpolation script to interpolate based on the
time-stamps in the actual measurement log the corresponding distance moved.

4.8.2 Results and Discussion
In this section, we report the performance of the four localisation algorithms - (i) Centroid
(ii) Weighed centroid (iii) Centroid with motion model (iv) Weighted centroid with motion
model. Table 4.2 and Figure 4.20 summarise the overall results of the algorithms.

Without adding motion, the two algorithms (Centroid and Weighted Centroid) report me-
dian accuracies of 8.41 m and 6.87 m respectively. Adding motion results, yields median
accuracies of 7.49 m and 5.14 m respectively. This is because the motion model filter utilises
its predicted estimate for the position of the device, in addition to estimates calculated using
current RSSI observations, to produce the new estimate (similar to that of a Kalman filter).
The cumulative distribution shows even the seventy-fifth percentile error reports less than 9 m
error for weighted centroid with motion incorporated, given the fact that we have completely
avoided the intensive radio-mapping process which is typically used in fingerprinting algo-
rithms. Figure 4.23 reveals that a considerable portion of the error occurs when the user is at
the extreme end of the corridor, as typically the extreme ends have much lower access point
density. Note that the building has no nearby neighboring buildings and hence the access
points which appear are only those from the building. Also looking at Figure 4.23 the first
floor measurements do not report any location estimates in the south side of the floor. This
is again due to the unavailability of the access points in that region (as seen in Figure 4.19a).
Considering the fact that 15% of the readings constitute either stair cases or at the south side
of floor 1, the reported mean accuracy of 6.68 m for the Weighted centroid with motion is
reasonable for a calibration-free approach.
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Mean Mean 50% conf. level (m) 75% conf. level (m)
Algorithm hor. error vert. error Horizontal Vertical Horizontal Vertical

Centroid 10.77 1.73 8.41 1.30 13.48 2.43
Weighted Centroid 8.53 1.51 6.87 1.34 9.74 1.84

Centroid (with motion) 9.01 1.84 7.49 1.47 12.47 2.42
Weighted Centroid (+ motion) 6.68 1.53 5.14 1.32 8.57 1.98

Table 4.2: Tracking performance summary. All values shown pertain to the location results
of the “walking” data traces collected for about twenty minutes in a five-storied building,
covering all five floors during the measurement period.

We mentioned in Section 4.7.2 the consequences of choosing the right the weighting fac-
tor (α) on localisation accuracy. Figure 4.18 shows how the signal variations reduce when a
higher value of α is used. This is particularly good when the device is still, and we would
want a clean signal to be able to choose the access point for estimating the location. How-
ever, this extreme smoothing of signal will not help much for the case when the device is
moving. When we increased the α to 0.9, we noticed that the mean error in the weighted
centroid algorithm with motion increased from 6.68 m to 9.84 m. This holds the same for
the case when a larger window of history size is used for temporal smoothing of position
estimates. We observed by raising the history window from five samples to twenty samples,
increased the error from 6.84 m to nearly 20 m. This is because adding a history size of that
length, contributes to a considerable delay in estimating the position and thereby severely
degrading the accuracy. We believe our presented motion detection schemes can be applied
to adapt both the weighting factor and the history window and thereby lead to a considerable
improvement in location accuracy. Automatically tuning these thresholds is part of our future
work.

Floor Identification:

This subsection reports how the presented algorithms detect correct floor information. This
is very important for many of the applications to identify at which floor a user is present.
Figure 4.22 shows a plot of the error in floor estimates for the Weighted centroid with motion
and the Table 4.3 gives the percentage of the measurement time, each algorithm reporting
that the user is in the correct floor. For most of the measurements, the algorithm reports
that the user is in the correct floor. It is particularly interesting to note that for periods
between 125–150 samples, the error becomes worse. These measurement samples refers
to the south side measurement done at floor 1, where we did not have any access points
mapped, hence any access points heard at that point were from higher floors, thereby pulling
the floor estimates higher by two floors. Table 4.3 and Figure 4.21 summarise the error in
floor estimates reported by all four algorithms on a per-floor basis. It is clear that the error
in the first floor contributes to the maximum error, as all algorithms consistently show an
average of only 50% correct estimation. Excluding the first floor measurements, in principle,
we can show that we are able to identify the correct floor around 82% of the measurement
time. Table 4.3 shows that there is a modest improvement between the algorithms that use
motion information over the other algorithms without motion model.
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All Floors Accuracy per floor
Algorithm floors 2–5 Floor 1 Floor 2 Floor 3 Floor 4 Floor 5

Centroid 70.9 79.4 45.2 72.5 80.3 84.4 83.3
Weighted Centroid 70.0 78.3 45.2 77.5 81.8 75.3 80.0

Centroid (with motion) 72.7 79.5 53.6 71.3 89.4 75.3 86.7
Weighted Centroid (+ motion) 75.1 82.2 53.6 80.0 90.0 75.0 86.0

Table 4.3: Accuracy of floor estimation, represented on a per-floor basis (percentages).
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Figure 4.23: Estimated position overlaid on a floor plan (groundtruth and the location es-
timates pertain to floor 1 measurements only). Comparing the trajectory of the groundtruth
and estimated location shows the error mostly happens on the stairs and towards the extreme
end of the corridor.
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4.9 Architecture for sharing location
The algorithms presented in the previous part of this chapter were used in a prototype called
FLAVOUR, which was originally designed to serve as a conference assistant. Figure 4.24
shows a high-level view of the service-oriented architecture used for sharing location in
FLAVOUR. All the services can be discovered through the Lookup Service. The informa-
tion about the access points is stored locally in a database, which is used by FLAVOUR to
compute the location of the users. Another source of information to be used is the topology
that is stored as geo-referenced maps. Using these maps, the users are able to visualise their
location, and the location of other people.
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Figure 4.24: High level view of the system architecture.

We have created a thin client that has to run on the users mobile device, while the server
part can either run on the mobile device or on the “infrastructure”. By infrastructure we
mean a server which does not need to be switched off because it is running on batteries and
has a permanent network connection. The advantage of running the LocationServer on the
infrastructure is that the location service can still be provided even if the client’s device is
off. The time-stamped location provided will be the last location in which the user’s device
was on. Furthermore, in this manner nothing can be concluded from the existence of the
user’s location in the Lookup service, because his location service is always available. On
the other hand, the users may not trust the system or may not be interested in sharing their
location when they are off-line, and, thus, run the LocationServer on the mobile device. At
present we cannot guarantee absolute privacy of the data when the LocationServer runs on
the infrastructure, as in principle it is possible that the administrator of the system hosting
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the software ‘spies’ on the user.
As shown in Figure 4.25 the functionality provided by FLAVOUR can be divided into:

location of others 

request subscription 

Thin Client 

Renderer 

Spotter 

Localiser 

APs 

location of others 

Publisher 

Privacy  
guardian 

Topology 

request location 

request subscription 

location of ME 

GUI 

x,y,z x,y,z 

Visualisation Localisation Location sharing 

lookup 
register 

Subscriber request location 

Lookup 
Service 

Location 
Sharing UI 

Figure 4.25: Components of FLAVOUR.

(a) Viewing Buddy location (b) Publishing location (c) Messaging

Figure 4.26: Snapshot of FLAVOUR.

• Location Sharing: The users can provide their location to other users and can be
aware of other user’s location. There are two mechanisms to share location infor-
mation: publish/subscribe and request. With the former the publisher sends updates
whenever the location of the user changes in a significant manner, while with the latter
the information is provided as a reply to a (one time) request. In both cases the Privacy
Guardian decides if the request should be rejected or accepted, and if accepted under
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which conditions (e.g. granularity, update frequency, duration). The location sharing
functionality is discussed in more detail below.

• Localisation: In order to determine the user’s location the Spotter measures the signal
strength of all the access points it hears. The Spotter sends those measurements to the
Localiser, which in turn will use them to compute the user’s location.

• Visualisation: The users can visualise their location, as well as the location of other
users and points of interest on a map using the Map Viewer. The Renderer composes
maps using the topology of the venue and points of interest, the coordinates of the user
provided by the Localiser, and the location of other users provided by the Location
Subscriber. Figure 4.26 illustrates a snapshot of the FLAVOUR interface.

Location Sharing

A very important issue for sharing location is privacy. In FLAVOUR we want each user to de-
cide what location information can be disclosed and to control when and how it is disclosed.
The Lookup service provides an entry for every person that registers to the conference. The
information in the Lookup service is the user’s name, affiliation and a pointer to his Loca-
tionServer. The basic interface provided by FLAVOUR to other users is:

• getLocation(Requester, Reason): One time request for the location of the user.

• subscribeToLocation(Requester, Reason): Subscribe permanently (i.e. during the con-
ference) to the location of the user.

• subscribeToLocation(Requester, Reason, TimePeriod): Subscribe during a certain pe-
riod to the location of the user for a given period.

The reply to a request for subscription may restrict the subscription to a shorter time
period and additionally put restrictions to the accuracy of the provided location and frequency
of the updates. In all cases the request may be rejected.

The Privacy Guardian uses the identity of the Requester to decide if the service requested
should be provided and with what restrictions. On the one hand, the Privacy Guardian checks
the identity of the Requester (if he is who he says) using a challenge-response protocol. For
this purpose it uses the public key authority service provided by the system that stores the
public keys of the users. In order to decide who can access the services and under which
conditions, the user can create a buddy list using the Location Sharing User Interface and as-
signing access rights. If a request comes in from a person not in the list, the Privacy Guardian
can ask the user for action through the Location Sharing UI using a similar mechanism to
a cookie blocker that provides options as ’allow once’, ’allow during conference’, ’block
once’, ’block always’, or set explicit time restrictions and intervals for updates. In the future
we will add the capacity to set the accuracy of the location provided as well. The Privacy
Guardian stores the reply from the user to decide what to do next time a request from the
same person arrives.

All arriving requests and their replies are logged by the Privacy Guardian. In this way the
user can afterwards analyse who requested his location and why by looking at the provided
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Reason. At present the Privacy Guardian does not have the capacity to analyse the given
Reason, instead it either just passes it on to the user to decide to accept or reject the request,
or simply logs it for future analysis. Thus, we rely on normal social control to prevent abuse
of the system (see [121] for a discussion on the subject). The Privacy Guardian also has
tools to let the user analyse the log and to provide warnings in case of possible abuses, for
instance if a user inquires for other user’s location very frequently. The frequent inquiring
may be justified by the given Reason, otherwise the user may find frequent inquiring a breach
of trust and consequently revokes or restricts the requester’s access rights.

Allowing individual requests is more privacy preservant than allowing subscriptions. As
by allowing subscriptions the user cannot see when the subscriber is really looking at his
location. Thus, basically he is allowing to be tracked. Although the study performed on
Active Campus by Griswold et al. [76] shows that users are not bothered by permanently
sharing their location with their friends, we believe that allowing one-time requests may
be more desirable. When a request is performed the user does not need to be immediately
notified (and since they may be bothered by this fact), especially if he has authorised the
requester to have access to his location at any moment. However, the request is logged for
accountability purposes.

4.10 Conclusions
This chapter addresses how to sense motion and location, leveraging existing WLAN infras-
tructure. Based on the characterisation of the reported RSSI measurements we developed a
range of motion detection algorithms to detect still and moving states. We identified a rich set
of features that could be gathered based on either temporal or spectral characterisation. Our
motion detection algorithm, exploiting the frequency domain characteristics yields a preci-
sion and recall of over 90%. We also showed that the sensitivity of a particular algorithm
was not only dependent on the chosen threshold, but also depends on the underlying data. It
will be interesting to consider the resource requirements of each the algorithms to analyse
the tradeoff between accuracy and complexity of the presented algorithms. One possibility of
extending this work is to use a combined set of features in a machine learning algorithm, to
obtain finer accuracy, and also explore the possibility of identifying more states like “cycling”
or “driving”.

We also showed the benefit of combining motion information with the location algorithm.
A median error of approximately 5 m can be achieved without the use of calibration. We
have based our analysis by testing the algorithms on a typical set up used in many office
environments, where access points are arranged linearly. However these results cannot be
generalised, as the results are very much dependent on the density and topology of the access
points in the test area.

The improvements in the algorithms with motion incorporated suggests that many of the
calibration intensive fingerprinting algorithms could use such a scheme for detecting users in
areas such as hallways, and restrict the fingerprints only to the rooms, as we envisage that our
method might not work as well there. This again depends on the access point configuration
in the test area. If there are access points also distributed along spatially seperated axis
it will result in considerable improvement because it will allow for better trilateration. In
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general, if the access points are deployed not only to provide good coverage (i.e. useful for
communication purposes), but if they are deployed keeping in mind that such infrastructures
can be used for positioning purposes, we can expect much more improvements.

When incorporating the motion information we assumed the walking speed of the user is
known, usage of other sensors which can actually give us the speed and direction, for instance
by using a combination of accelerometers, gyroscopes and magnetometer could enhance the
accuracy further. Other possible directions of research includes, incorporating map-matching
methods and in combination with probabilistic methods like particle or Kalman filtering.

We also showed in brief how motion detection algorithms can be applied to give an
indication of what degree of history size can be used for temporal smoothing of the location
estimates (i.e. adaptive windowing) e.g. by setting a higher history size, when still and lower,
when moving. The weighting factor (α) to be used in the moving averaging can also be
automated (i.e. adaptive thresholding) e.g. choosing higher α when the device is still and
smaller α when the device is moving. Although addressed in short, we showed what scale of
improvements can automatic tuning of these thresholds can bring.

Finally, we have presented an architecture to share the location among peers. Following
Langhereich’s guidelines [119] we have made privacy an important design consideration of
our architecture. There are two main design issues that make FLAVOUR privacy-observant.
On one hand, it adheres to the widely accepted notion of privacy formulated by Westin in
1967 that “privacy is the claim of individuals to determine for themselves when, how, and to
what extent information about them is communicated to others” [197]. On the other hand, the
location is determined by software controlled by the users, which either runs completely on
their mobile devices or partly on their mobile devices and partly on the infrastructure. Thus,
there are no centralised services that are solely responsible for tracking the users’ location.
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CHAPTER V ∗

Ultra-wideband positioning using
pseudoranges and angle-of-arrival

This chapter presents two algorithms, non-linear regression and Kalman filtering, that fuse
heterogeneous data (pseudorange and angle-of-arrival) from an ultra-wideband positioning
system. The performance of both the algorithms is evaluated using real data from two de-
ployments, for both static and dynamic scenarios. We also consider the effectiveness of the
proposed algorithms for systems with reduced infrastructure (lower deployment density), and
for lower-complexity sensing platforms which are only capable of providing either pseudor-
ange or angle-of-arrival.

∗This chapter is a minor revision of the paper published with the title“Position Estimation from UWB Pseu-
dorange and Angle-of-Arrival: A Comparison of Non-linear Regression and Kalman Filtering ” In Proceedings of
Location and Context Awareness (LoCA), Tokyo, Japan, May 2009 [137].
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5.1 Introduction
Location systems based on conventional radio technology have relatively coarse-grained per-
formance indoors because their signals typically cannot be resolved accurately enough to pro-
duce quantities such as a time-of-arrival or angle-of-arrival. Instead, received signal strength
indication (RSSI) or other metrics are used to estimate location via a technique called fin-
gerprinting, but positioning errors of several metres often result because of indoor multipath
fading. By contrast, ultra-wideband (UWB) systems can employ pulses of extremely short
duration to achieve the much finer signal resolution. This resolution also aids in the identifi-
cation of erroneous measurements due to multipath [63].

UWB positioning systems can measure time-of-arrival (TOA), time-difference-of-arrival
(TDOA) or angle-of-arrival (AOA), or some combination of them. A time-of-arrival can
be converted into a range estimate, but measuring time-of-arrival directly is problematic,
because the synchronisation signal (typically conventional radio) and the UWB positioning
pulse both travel at near the speed of light.∗ Pseudoranging (based on TDOA measurements)
is more attractive for some deployments, since there is no need for precise synchronisation
between the transmitting and receiving entities. A network of receivers can be precisely syn-
chronised using stable clocks which are periodically corrected via a wired reference timing
signal [187]. Producing AOA estimates requires a receiver equipped with an antenna array.

One UWB positioning system [62] estimates a tag’s location using pseudorange data,
with a stated accuracy of about 30 cm. Ubisense is a commercial UWB-based location system
which performs measurement of both pseudorange and AOA (azimuth and elevation). The
advantage of using AOAs as well as pseudoranges is that location can be determined with
fewer sensors, compared to systems that use just pseudoranging. The reported accuracy
(using their proprietary algorithms) in 3D is 15 cm.

Contributions: This chapter examines the results of two positioning algorithms for pseu-
doranging and angle data. The four primary contributions are as follows:

• A brief characterisation of the raw observations reported by two different Ubisense
deployments (Section 5.3).

• Formulation of two algorithms (regression using a non-linear model and Kalman fil-
tering Section 5.5) which fuse the heterogeneous observations (pseudorange, azimuth,
elevation) of an UWB system.

• Characterisation of the static (Section 5.6) and dynamic (Section 5.7) tracking perfor-
mance of the two algorithms.

• An evaluation of the algorithms on homogeneous data, showing that the algorithms are
also appopriate for less sophisticated UWB positioning sensors, such as those which
do not have tight synchronisation for pseudoranging, or are not equipped with arrays
for sensing angle-of-arrival (Section 5.6.2).

∗If a wired tether were used to connect the receiver and transmitter, direct range measurement would be possible
after calibration of the timing offset due to the tether. Direct range measurement using round-trip time-of-flight
measurements are possible for devices capable of both transmitting and receiving UWB positioning pulses.
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5.2 Related work
Three approaches are generally used to calculate location using range, pseudorange, or AOA
estimates. The first approach uses a simple geometric model to calculate intersection of
circles (lateration), hyperbolas (hyperbolic localisation) or lines (angulation), depending on
whether range, pseudorange, or AOA data is used. However, such simple algorithms typically
do not take measurement error into account, and cannot make optimal use of redundant data
(such as that gathered from a large number of receivers) which overspecifies the solution.

By contrast, a second approach is to use optimisation algorithms which are specifically
designed to find a solution which minimises the total error between the collected data and
the location estimate (i.e. the residual error). These algorithms traverse the solution space
and compute expected measurements for each estimate of the solution. The gradient method
employs derivatives to observe the rate at which an area of the solution space converges
towards an optimum. Some examples in this category are the method of steepest descent,
Newton’s method, and the Levenberg-Marquardt method [159]. Such methods require model
equations which are used to express the measured values (such as pseudorange, or AOA) in
terms of the position being solved. The Bat system [189], and other ultrasonic positioning
systems [55] apply such model-based optimisation algorithms to compute location solutions
from ranging data.

Scott et al. utilise a non-linear system of equations to compute location based on pseudo-
ranges (in this case TDOAs of acoustic signals) [93]. Fontana comments on the performance
differences between the steepest decent search and Davidon-Fletcher-Powell algorithm for
estimating a tag’s location using UWB pseudorange data [62]. It is worth noting that these
error minimisation algorithms do not make use of information obtained from prior location
readings.

Algorithms that utilise a solution state (either current state, or current and past states) can
be grouped under the third approach of state-estimation algorithms. State-estimation algo-
rithms are used extensively in robot localisation. They operate by iteratively combining the
previous estimate of the state (e.g. a position and orientation) with the observed measure-
ments (range, AOA, etc. ). Many state estimation algorithms exist [65], of which Kalman
filtering [193] is most commonly used. The HiBall tracking system [194] employs a tech-
nique called single-constraint-at-a-time (SCAAT) tracking to model movement, and handles
one observation at a time rather than obtaining multiple simultaneous measurements. The
Constellation system [68] tracks a mobile unit consisting of a 3D inertial sensor and a num-
ber of ultrasonic sensors which report ranges that are fed into a SCAAT algorithm. The
idea is to correct the positional drift in inertial tracking by incorporating ultrasonic range
measurements in an extended Kalman filter. Smith et al. present a tracking algorithm using
extended Kalman filtering of ultrasonic range data gathered from “Cricket” devices [173].
Smith et al. employ a combination of least squares minimisation, Kalman filtering and out-
lier rejection to predict the state of the Cricket device. While their approach is similar to our
proposed Kalman filtering, we fuse heterogeneous data (pseudoranges and angles-of-arrival),
and operate on UWB rather than ultrasound measurements.

Recent work by Renaudin and Kasser demonstrates the fusion of pseudoranges and AOAs
from a Ubisense system together with inertial sensing data using an extended Kalman fil-
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ter [164]. Curiously, their modelling equations are quite different to ours presented below
(Eqns. 5.1–5.4) which we have verified through the analysis in this chapter. Moreover, the
goal of Renaudin and Kasser is the augmentation of inertial tracking with UWB sensing.
There is no literature which explores in detail the fusion of heterogeneous data (pseudorange
and AOA) through regression of Kalman filtering for UWB position sensing.

5.3 Deployments and data collection
In all our experiments, we used hardware and software procured from Ubisense. In brief,
Ubisense hardware is comprised of two entities: a tag† which emits UWB pulses when trig-
gered by the system; and receivers (“Ubisensors”) (figure 5.1(a)) which are typically fixed at
upper extremes of the measurement volume. The receivers are networked via CAT5 cabling
and it can be assumed that they are tightly synchronised (once the cable timing offsets are
estimated during calibration). A workstation PC is connected to the same network, and runs
the Ubisense Location Engine (LE), which can be used to configure and calibrate the sys-
tem, and which produces location estimates from receiver measurements, using proprietary
algorithms.

The calibration of the receivers’ position and orientation are crucial in achieving accurate
location estimates. The coordinates of a receiver’s position can be estimated with sufficient
accuracy in the order of few centimetres via manual methods, such as measuring the dis-
tance (using a tape measure or laser rangefinder) from the receiver centre to several known
points in the environment. By comparison, accurate estimation of receiver orientation‡ (yaw
and pitch) is more difficult without special equipment, and additionally there can be small
misalignments between the plastic casing of the Ubisensor, and the plane of the UWB re-
ceiver array inside. Thus, calibration of receiver pitch and yaw is normally undertaken using
a series of measurements from a tag and the measurement logging and orientation estimation
process is automated by the Ubisense Location Engine. To calibrate the receiver pitch and
yaw for the systems at our sites, we used two different modes of the automated process, as
described below. The deployments we describe below were specifically made to differ in
two respects: (i) granularity of the calibration i.e. calibrated using specialised equipment and
system-specific knowledge vs. non-specialised and less accurate equipment (ii) test environ-
ment i.e. carefully chosen test points with favorable line-of-sight vs. randomly chosen test
points with partially blocked/blocked line-of-sight conditions.

5.3.1 Low-overhead or real world deployment (Twente)
Six receivers were deployed covering an area of approximately 15× 9 m (Figure 5.2b). Four
of the receivers were deployed in an area which was relatively empty except for some desks
along the corners of the room. The remaining two receivers were placed in the rooms along
the other side of the corridor, in typical office spaces containing desks, metal shelving, and
other furniture. We arbitrarily chose twenty-one test points across the measurement volume.
Measurements were taken with tags placed at two different heights (75 cm and 151 cm above

†Ubisense offer both a “slim” and a “compact” tag. We chose to use the compact tag(figure 5.1(a))for the data
collection. It is advertised that the tag emits pulses in an omnidirectional fashion, and it performed as such during
our initial, informal experiments.
‡Ubisense use the aeronautical terms yaw, pitch and roll to describe receiver orientation [183].
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A) B)
(a) Ubisensors (receivers equipped with antenna arrays and slot for provisioning time syn-
chronisation) and Ubisense Compact tag (transmitter)

(b) Ubisense defined yaw and pitch: Yaw is defined as the positive anticlockwise and Pitch is
defined negative anticlockwise

Figure 5.1: Ubisense system entities and orientation.
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the floor). The positions of the sensors and the test points were surveyed using tape measures.

Automatic calibration. At Twente, we used the “automatic calibration” mode of the
Ubisense LE. In automatic mode, a tag is placed at a position within the measurement vol-
ume. The height of the tag must be known and provided to the LE by the user, but the system
then takes measurements to estimate the horizontal position of the tag, and the pitch and yaw
of the receivers which can reliably detect the tag’s pulses. The tag is then moved to another
position and this process is repeated until the pitch and yaw of all receivers is estimated.

5.3.2 Carefully planned and calibrated or ideal deployment (Lancaster)
At another site, a smaller measurement area of 2.75× 2 m was covered with five receivers.
Readings were taken with a stationary compact tag placed at four heights (about 0, 7.5, 75,
and 125 cm above the floor), at sixteen points across the measurement area (Figure 5.2a).
The positions of the sensors and the test points were surveyed using a Leica Total Station.§

Dual calibration. At Lancaster, the “dual calibration” mode was used to estimate re-
ceiver pitch and yaw. In this mode, a tag is placed at a known position in the environment,
and its 3D coordinates are provided to the LE. Measurements of the tag’s pulses are then gath-
ered from two receivers, and the receivers’ pitch and yaw are estimated for one or both of the
receivers (selectable by the user). The dual calibration has the potential to more accurately
estimate pitch and yaw, since the estimation process does not depend upon the accuracy of
the LE’s result for the tag’s horizontal position (as it does in the automatic calibration mode).
Ubisense recommend that when performing calibration, the tag be placed as near as possible
to the boresight of the receiver(s) being calibrated. At Lancaster, we ran the dual calibration
for all five receivers at each of twelve known points (whose coordinates had been surveyed
using the Totalstation) in or near the measurement volume. The twelve calibration points
(which are different from the test points used in our evaluation) were each selected for their
favourable line-of-sight to at least four of the five receiver units. To remove poor pitch and
yaw estimates (typically due to poor line-of-sight or environmental reflections), we took the
median of the twelve pitch and yaw values for each receiver as our final calibration.

5.4 Characterisation of pseudoranges and angle-of-arrival
Figure 5.3 shows the distributions of the receivers’ raw measurements for a static tag placed
at the test points at each site (sixty-four locations at Lancaster, and forty-two locations at
Twente). The accuracy of the Lancaster measurements is significantly better than that of the
Twente measurements (Table 5.1). The Twente deployment covers a wider area, and not all
receivers have line-of-sight to all the test points. In its measurement and location estimation
process, the LE identifies receivers whose measurements were rejected for the purposes of
computing a location; the rejected measurements typically correspond to receivers which had
poor line-of-sight to the tag (and may therefore represent multipath readings). We plot the
raw accuracy with these rejected measurements excluded. In total, the discarded measure-

§A Total Station is a professional surveying device which accurately measures the range, azimuth, and elevation
between itself and a reflector, and which can thus be used to estimate the 3D coordinates of the surveyed point.
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Figure 5.2: Plan views of the deployment areas.
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ments represent 25% of the Twente dataset.
Pseudorange Azimuth Elevation

Lancaster 6 cm 1.5° 9°
Twente 37 cm 22° 17°

Twente (excl. LE discards) 25 cm 6.8° 8°

Table 5.1: Seventy-fifth percentile accuracy of the raw measurements of two Ubisense de-
ployments.

However, even with the LE-rejected measurements excluded, the data from the Twente
deployment is significantly worse in accuracy when compared to the Lancaster data. In gen-
eral, there are three sources of raw measurement error in any location system: (i) sensor
inaccuracy; (ii) calibration inaccuracy (sensor position, pitch and yaw), and (iii) inaccura-
cies induced by environmental effects (attenuation and/or reflection of the UWB pulse). The
Lancaster deployment was more carefully calibrated (Totalstation survey as opposed to hand
measurements; and dual calibration of all receivers at twelve surveyed points, as opposed to
automatic calibration at several arbitrary points). Moreover, the Lancaster deployment was
specifically designed to accurately monitor the measurement volume; all five receivers have
favourable line-of-sight to all sixty-four test points. By contrast, the Twente deployment has
a much lower receiver density, covering a measurement volume containing office furniture
and walls. For these reasons, we would argue that the inaccuracy of the Twente raw mea-
surements is due to a poorer calibration (visible in the significant error offsets for some of
the Twente receivers), and less favourable line-of-sight and multipath conditions caused by
the environment.

Thus, the two sites represent very different kinds of deployment. The Lancaster deploy-
ment has been carefully calibrated using specialised equipment and system-specific knowl-
edge, and has been designed to monitor a small volume using a high sensor density. The
Twente installation covers a much larger volume, the environment was left unmodified (lead-
ing to a higher degree of unfavourable pulse propagation for some tag locations), and sensor
position and orientation have been calibrated based on fewer measurements taken with non-
specialised, less accurate equipment.

5.5 Overview of Algorithms

5.5.1 Non-linear regression

We formulate a non-linear regression algorithm [159, section 15.5] which utilises modelling
equations. The regression is an iterative process which finds an estimate of the tag’s location.
The estimate can be seen as a “best fit” for the pseudoranges and/or angles-of-arrival and
the surveyed receiver locations and orientations, since it minimises the sum of squares of the
residual errors.

Pseudoranges. For a receiver i, the receiver’s pseudorange estimate (based on the mea-
sured relative arrival time of the pulse emitted by the tag) d̃i, the receiver’s 3D location
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Figure 5.3: Raw measurement error distributions.
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(xi, yi, zi), and the tag’s location (u, v,w) can be related as follows:

d̃i =

√
(u − xi)2 + (v − yi)2 + (w − zi)2 − dc, (5.1)

where dc is the distance offset common to all receiver pseudorange measurements, and arises
from the tag’s unknown clock offset from the system. It is assumed that the receivers are
very tightly synchronised, or their reported pseudoranges have been otherwise appropriately
adjusted (using for example deployment-specific calibration information) for any time offset
which may exist between receiver units.

Angles-of-arrival. The receiver-reported azimuth φi of a tag is related to the tag’s position
(us, vs,ws) in the receiver’s frame of reference.

Quads. I & IV: φi = arctan
(

vs

us

)
Quads. II & III: φi =

(
π + arctan

(
vs

us

))
(5.2)

Similarly, the elevation θi of a tag measured by a receiver is defined as

θi = arctan

 ws√
u2

s + v2
s

 (5.3)

Note that a four-quadrant definition of the elevation θi is unnecessary, since the denominator
of the arctangent operand is always positive.

To compute the tag location in the receiver’s frame of reference, first the coordinates of
the tag (urel, vrel,wrel) relative to the receiver are computed by subtracting the receiver coordi-
nates from the coordinates of the tag in the global frame of reference, i.e. (u− xi, v−yi,w−zi).
This effectively translates the origin of the global coordinate system to the location of the re-
ceiver. These tag-to-receiver relative coordinates must be transformed to the receiver’s frame
of reference. This is first a rotation about the Z axis by an amount corresponding to the re-
ceiver’s yaw ϕi, followed by a rotation about the Y axis by an amount corresponding to the
receiver’s pitch ϑi. The rotation matrix RGS can thus be defined as:

RGS =


cos(ϑi)cos(−ϕi) −cos(ϑi)sin(−ϕi) sin(ϑi)

sin(−ϕi) cos(−ϕi) 0
−sin(ϑi)cos(−ϕi) sin(ϑi)sin(−ϕi) cos(ϑi)

 (5.4)

Note that Ubisense yaw is defined as positive anticlockwise (looking at the XY plane from
the Z+ direction), and Ubisense pitch is defined as negative anticlockwise (looking at the XZ
plane from the Y+ direction). The position of the tag (us, vs,ws) in sensor’s frame of reference
is then computed by multiplying the tag’s coordinates relative to the receiver (urel, vrel,wrel)
by RGS.

Outlier rejection. The number of observations required (pseudoranges and/or angles-of-
arrival) depends upon the particular tag-to-receiver geometry. In typical Ubisense deploy-
ments, to estimate both tag location and the distance offset d̂c at minimum either two pseu-
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doranges, one azimuth, and one elevation, or four pseudoranges are needed. To estimate only
tag location, at least three angles-of-arrival (including at least one azimuth and one elevation)
are needed. For locations estimated using more than the minimum number of observations,
the standard error s of the estimate can be calculated from the residual errors ei:

s =

√∑I
i=1 e2

i

I − C
, (5.5)

where I is the number of observations being used in the non-linear regression, and C is
the minimum number of observations required. C is set to 3 if only tag location is being
estimated, or to 4 if the distance offset d̂c is also being estimated. The non-linear modelling
process assumes the residual errors εi=1...I are normal, independent, and have equal variance
and zero mean.

With heterogeneous data such as that reported by Ubisense receivers (pseudorange, az-
imuth, and elevation), the computed residuals have different units. Thus, before applying
Eqn. 5.5 to estimate the standard error, each residual should be scaled by a typical magnitude
of error which might be expected for each type of data. To perform scaling of residuals, we
utilised divisors of 30 cm, 4° and 3° for pseudorange, azimuth, and elevation, respectively.
These were chosen to work with both the Twente and Lancaster datasets, rather than being
specifically tailored to either one.

If the observations given to the regression do not corroborate one another, the result will
typically have a high standard error estimate. Standardised residuals [71, ch. 4] can be used
to identify the observations which agree the least with the solution. If the standard error
estimate was greater than 0.30, our regression algorithm removes the observation with the
highest standardised residual, and re-computes the solution. This process continues until the
standard error of the estimate falls below 0.30, or the highest residual is less than 1.0.

Even after the outlying observations have been removed, the location accuracy can still
be poor (Figure 5.4(a)). To improve accuracy, one tactic is to simply reject location readings
which have a high standard error estimate. For the regression results presented in the remain-
der of this paper, we have omitted estimates with a standard error higher than 0.5 (except
where otherwise noted). Assuming both pseudorange and angle-of-arrival data is used, this
corresponds to about 20% of the readings taken at Twente (Figure 5.4(b)), and very few (less
than 0.1%) of the static readings taken at Lancaster.

5.5.2 Extended Kalman filtering (EKF)
We formulate an Extended Kalman Filter (EKF) using a state vector x̂k with seven variables,
three position variables u, v,w, user clock offset dc and three velocity variables vu, vv, vw.
After any discrete time step, which is approximately 108 ms¶ the filter has an idea of its state
and how confident it is in that state (prediction). The filter then corrects the predicted state
based on the most recent measurements (pseudoranges and angles) and its internal state. Note
that we use an Iterative Extended Kalman Filter (IEKF) [144], which is an extension to the
¶The tag emits a UWB pulse once every four Ubisense time slots. With our particular version of Ubisense

hardware, each time slot corresponds to 27.029 ms.
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Figure 5.4: Horizontal accuracy at Twente for different standard error thresholding levels.

standard EKF, and is useful for reducing the errors that may occur due to large non-linearities
in the system.

Initialisation. The filter is initialised with a posterior state estimate x̂−k and uncertainty
P−k . Kalman filter estimates rely heavily on these initial estimates. We set the initial state
estimates based on averaging the first twenty measurements through non-linear regression
(as described above), discarding any with high standard error. Since we have set the tag at
the highest update rate, this corresponds to a wait of a few seconds to start the Kalman filter.
We chose to use a small but non-zero value for P−k , meaning that there is a little uncertainty
in the defined initial state.

System Model and Measurement Model. We use a constant-velocity model, i.e. it is as-
sumed the tag moves at constant speed between time steps. Thus, the new state estimate x̂k

will depend on the previous state estimate x̂k−1, constant velocity vxk and a noise term wk

(as in, x̂k = x̂k−1 + vxk dt + wk). In order to predict the state using the measurements, we
will have to describe how the measurements are related to the state. The measurement model
ẑk(= Hx̂k + vk) describes how measurements depend on the state estimates x̂k. H is the Jaco-
bian matrix with partial derivatives of the measurement function with respect to the state x̂k.
The measurement function here represents the pseudorange (d̃i), azimuth (φi) and elevation
(θi) as defined earlier in Sect. 5.5.1.
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Prediction & Correction. The predicted error covariance (P−k ) and the state estimate (x̂−k )
for a time-step is given by:

x̂−k = Ax̂k−1 + Buk

P−k = APk−1AT + Q.
(5.6)

Here, A is the Jacobian matrix and Q is the process noise covariance. The process noise
covariance Q for a position-velocity model includes the process covariance in position and
velocity and the process covariance in the position.

The filter computes the posterior state estimate by taking the prior state estimate and
combining with the Kalman gain Kk times the difference between the actual measurement
(pseudoranges and angles) and a measurement prediction (ẑk = Hx̂k + vk), called the innova-
tion or residual r. If the innovation is zero, then the predicted state estimate exactly reflects
the real measurement. But if there is a difference between the predicted and the observed
measurement, then the prior state estimate needs to be updated. In Eq. 5.7, Kk determines
to what extent the innovation should be used in the posterior state estimation. Based on the
measurement noise R and the prior error covariance P−k , the gain can favour the innovations
or the measurements more. The measurement noise R for pseudorange and angles (azimuth
and elevation) is set to be 10 cm, 7◦ and 10◦ respectively.

Kk = P−k HT (HP−k HT + R)−1

x̂i+1
k = x̂−k + Kk(zk − H(x̂−k − x̂i

k))

Pk = (I − KkH)P−k−1

(5.7)

In Eq. 5.7 the Jacobian matrix H is evaluated at the most recent intermediate state estimate x̂i
k

(difference between the IEKF and EKF). After a number of iterations or when the intermedi-
ate state estimate does not differ with more than a certain threshold from x̂i−1

k , the filter sets
the posterior state estimate and estimates its posterior uncertainty. It is important to note that
the IEKF computes the uncertainty in the state only after it finds the most accurate interme-
diate state estimate. Though the computations involved in IEKF are larger than the standard
EKF, the state estimates will be better because of re-evaluation of the measurement function
and the Jacobian.

Validation gating. It is imperative to employ some form of outlier rejection (also known
as validation gating in Kalman literature) as part of the filter, since noisy measurements can
cause the filter arrive at a bad state estimate. In most cases, innovation or residual r is used
to identify outliers. An approach to eliminate outliers is based on r2S −1 > γ, where S −1 is
a scalar based on the state and γ is an empirically-chosen parameter [173]. Alternatively,
the distribution of innovations can be used to detect innovations that are unlikely to oc-
cur. Recent work by Renaudin looks at the possibility of eliminating outlying measurements
based on human body orientation and comparing the predicted state with the current mea-
surements. Another interesting approach is to check the condition for optimality of the filter.
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It is reported [134] that through the usage of statistical methods it is possible to check if the
innovation sequence is white (a sufficient and necessary condition for testing optimality). If
the filter shows sub-optimality, R and Q can be adjusted in order to make the filter optimal,
thereby making the Kalman filter adaptive. We however, chose to use the simple strategy
of using the innovation distribution (based on setting thresholds determined empirically) to
identify outlying measurements.

5.6 Static Positioning
For the static positioning experiments at Lancaster, a tag was placed at the sixteen test points
(Figure 5.2(a)), at four different heights. At each of these sixty-four locations, receiver read-
ings were gathered for about one thousand tag pulses and about 1000 readings were gathered.
At Twente, a tag was placed at the twenty-one test points (Figure 5.2(b)) at two different
heights, for a total of forty-two locations, with about 1500 readings at each. For our ex-
periments at both sites we set the tags to run at the highest update rate, emitting an UWB
pulse once every four Ubisense time slots, which in our particular version of the Ubisense
hardware is equivalent to about ten times per second. All receiver observations were fed
into our algorithms, even those rejected by the Ubisense LE for its location estimation (see
Figure 5.3).

5.6.1 Results from heterogeneous observations
Figure 5.5 shows the accuracy of the regression and Kalman filtering algorithms when they
are provided with the heterogeneous measurements (pseudoranges and angles-of-arrival) pro-
duced by the receivers. Note that the vertical accuracy at Lancaster is more than thirty cen-
timetres worse than the horizontal accuracy. This might be explained in two ways. First, the
geometry of the Ubisense deployment (receivers are approximately co-planar) and the types
of measurements they take (pseudorange, azimuth, and elevation) mean that there is more
information about the tag’s horizontal position solution (heavily contributed to by pseudor-
ange and azimuth), and less about the vertical position of the tag (primarily affected by the
elevation readings). Second, referring to Figure 5.3, one can see that the pseudoranging and
azimuth accuracy tend to be better than the elevation accuracy. At Twente, the opposite is
true: the vertical accuracy tends to be superior to the horizontal. However, about 30% of the
Twente raw azimuth readings are off by more than 20°, whereas the elevation accuracy is
comparable to that at Lancaster (Figure 5.3c).

On the Lancaster data, the Kalman filter performs slightly better than the regression. This
is because the Kalman filter utilises its predicted estimate for the position of the tag, in addi-
tion to new receiver observations, to produce the new tag estimate. By contrast, the regression
algorithm utilises only the receiver observations from the current time slot to compute a so-
lution. Thus the Kalman filter can be slightly more accurate, especially for static situations
where the location estimate is stable for consecutive observations. Note that for the Twente
data, the Kalman filter has much worse horizontal error than the regression. However, this
is because the regression rejects results with a high standard error estimate. Rejecting no
readings (Figure 5.4), the regression’s 75% horizontal accuracy of 106 cm is comparable to
the Kalman filter’s 108 cm.
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75% confidence level (cm) 90% confidence level (cm) Estimates
Algorithm Site Horizontal Vertical Horizontal Vertical accepted (%)
Regression Twente 42.07 54.74 155.59 101.04 80.42

Kalman Twente 107.82 51.86 276.95 63.72 N/A
Regression Lancaster 8.83 42.13 16.02 68.46 99.98

Kalman Lancaster 7.51 37.35 11.14 52.61 N/A

Table 5.2: Performance summary of static positioning using heterogeneous data.

Effect of reduced receivers. Decreasing the required infrastructure can reduce installation
and calibration cost. To show how well our algorithms support reduced infrastructure, we
compute the tag locations based on the observations from subsets of receivers. As expected,
the accuracy of both algorithms decreases as infrastructure density decreases. However, the
Kalman filter degrades much more gracefully; note in particular the difference in the vertical
accuracy results for Kalman and regression. Moreover, the regression rejects more readings
as deployment density decreases, whereas the Kalman filter consistently supplies reliable
estimates regardless of density.

No. of 75% confidence level (cm) 90% confidence level (cm) Estimates
receivers Horizontal Vertical Horizontal Vertical accepted (%)

All 8.83 42.13 16.02 68.46 99.98
Non-linear 4 11.38 47.59 18.25 75.05 99.66
regression 3 15.02 55.82 22.85 86.29 95.07

2 24.24 64.76 36.29 108.11 52.78
All 7.51 37.35 11.14 52.61

Kalman 4 9.10 37.38 13.69 53.02 Not
filtering 3 11.38 37.60 17.07 51.93 applicable

2 14.45 35.74 17.26 53.87

Table 5.3: Reducing deployment density (heterogeneous data, Lancaster static measure-
ments).

5.6.2 Results from homogeneous observations
Both the algorithms we have presented are capable of computing location estimates using
only pseudoranges or angles-of-arrival. It is interesting to consider their performance on
homogeneous data in order to judge our algorithms’ application for UWB position-sensing
platforms having fewer capabilities than Ubisense. For example, receivers not equipped
with array processing would not be capable of measuring AOA. Or, nodes in a distributed,
wireless sensor network might only be able to measure angle-of-arrival, as the nanosecond-
level node synchronisation required for pseudoranging is prohibitively difficult without a
wired connection.
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Data 75% conf. level (cm) 90% conf. level (cm) Estimates
type Algorithm Site Horizontal Vertical Horizontal Vertical accepted (%)

Regression Twente 39.80 141.28 68.30 233.93 18.48
Pseudo- Kalman Twente 330.62 491.51 1983.08 1229.96 N/A
ranges Regression Lancaster 8.85 46.48 14.66 94.44 84.14

Kalman Lancaster 10.03 39.17 17.75 75.80 N/A
Regression Twente 190.55 64.10 435.11 103.02 63.93

AoAs Kalman Twente 452.10 59.62 678.16 119.24 N/A
Regression Lancaster 19.56 38.95 30.55 70.40 98.1

Kalman Lancaster 17.18 37.15 26.89 54.92 N/A

Table 5.4: Performance summary of static positioning using homogeneous data.

Pseudoranges only. Figure 5.6 shows the accuracy of the two algorithms operating on
pseudorange data only, at both sites. As in the heterogeneous case, the regression performs
significantly better than the Kalman filter on the Twente data; however note the ratio of read-
ings rejected by the regression—over four-fifths for the Twente dataset (Table 5.4). Even for
the Lancaster dataset, the regression rejects over 15% of readings. On the Lancaster data, the
Kalman filter’s accuracy is comparable, and it provides constant updates (no readings are re-
jected). Note that in general the vertical accuracy is inferior compared to the heterogeneous
case. This is because the vertical solution is less constrained when only pseudoranges are
used (no elevation data is present). The 3D accuracy of the Twente results are especially
poor, since the accuracy of the underlying pseudoranges is much lower than in the Lancaster
deployment (37 cm compared to 6 cm, at the 75% confidence level).

Angles-of-arrival only. Using only angles-of-arrival, the two algorithms perform compa-
rably (Figure 5.7 and Table 5.4). The accuracy for the Lancaster deployment is quite favour-
able (horizontal and vertical 75% confidence better than 20 and 40 cm, respectively). This
is because for the majority of the Lancaster readings, a reliable azimuth and elevation were
reported by all five receivers. The Twente AOA-only results are quite the opposite of the
Twente pseudorange-only results. While the Twente vertical accuracy is about as good as the
heterogeneous case (Figure 5.5), around half of the readings exhibited a horizontal accuracy
worse than one metre. Inspecting the per-receiver distributions reveals that three out of the
six Twente receivers returned very poor azimuth estimates about 25% of the time. As men-
tioned above, this is most likely due to environmental effects and an inaccurate calibration.
Thus, without the pseudorange contribution to the solution, the seventy-fifth percentile hor-
izontal accuracy falls from several tens of centimetres in the heterogeneous case, to several
metres in the AOA-only case.
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5.7 Dynamic Tracking
At Lancaster, dynamic data traces were taken in the test arena. Data was recorded (Fig-
ure 5.8) in traces lasting approximately seven minutes each, resulting in about 2500 pulse
readings per trace. We gathered two types of dynamic data (Figure 5.9): “robot” data (four
traces) was generated as a Lego Mindstorms robot roamed the arena (velocity 0.16 m/s); and
“walking” data (three traces) was recorded as a person pulled the robot around in the arena
using a tether (peak velocity of about 1 m/s). The groundtruth positions of the tag in the
dynamic experiments were recorded using computer vision–based localisation. Two cameras
equipped with fisheye lenses were placed above the measurement area, a fiducial marker was
rigidly attached to the top of the tag, and reacTIVision software was used to perform accu-
rate localisation in real time. Since there are slight differences in the timestamps between
the logged camera estimates and the ubisense estimates, we use a weighted-average method
to interpolate the camera data for the corresponding ubisense timestamp. Where there were
large gaps in the camera timestamps, the interpolated values may not be valid, hence inter-
polation was done only if the surrounding data points are close in time (shorter than 300 ms).
For gaps greater than this, the Ubisense readings are discarded, to allow accurate comparison.
For most traces, this method resulted in about 10% of receiver observations being dropped.

Lego mindstorm robot
moving at 0.16 m/sFiducial marker,

Ubitag placed underneath
the marker

Cameras equipped with
fisheye lenses

Figure 5.8: Test arena, Lancaster dynamic experiment.
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Figure 5.9: Sample location traces: “Walking” (top) and “robot” (bottom), Lancaster dy-
namic experiment.
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The location accuracy for the “robot” and “walking” traces is roughly equivalent for
each algorithm, despite the large difference in the speed of the tag (Figure 5.10). This is
likely due to the sufficient update rate of Ubisense readings (about 10 Hz) for both types of
trace. Since the accuracy does not change noticeably between the two speeds, for the ho-
mogeneous dynamic case (Figure 5.11 and Table 5.5), we consider only the three “walking”
traces. The “walking” homogeneous results are comparable to the estimates for static data
taken at similar height. For example, the regression operating on pseudoranges only yields
a 75% horizontal dynamic accuracy of 20 cm, which is exactly the same accuracy as for the
static readings taken at a height of 7.5 cm.

75% conf. level (cm) 90% conf. level (cm) Estimates
Data type Algorithm Horizontal Vertical Horizontal Vertical accepted (%)

Pseudoranges Regression 18.31 35.31 27.46 55.43 99.66
and AoAs Kalman 21.02 26.07 31.42 36.12 N/A

Pseudoranges Regression 20.29 90.63 26.86 167.24 61.86
only Kalman 33.30 46.27 55.84 53.90 N/A

AoAs Regression 32.43 39.58 48.53 61.01 94.83
only Kalman 48.69 15.87 62.87 22.16 N/A

Table 5.5: Dynamic tracking performance summary (Lancaster). All values shown pertain
to the location results of the three “walking” data traces.
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5.8 Ubisense Location Engine Estimates
Although the goal of this chapter is to characterise our algorithms’ performance with dif-
ferent deployments and types (pseudorange and angle-of-arrival) of UWB positioning data,
we provide here the estimates produced by the Ubisense Location Engine for purposes of
comparison. When the data was logged at Twente, the Ubisense LE filtering parameters had
not been set appropriately—for all experiments at Twente, the LE was configured to “fixed
height information filtering,” which requires an approximate height to be set by the user. Our
algorithms assume no such special knowledge, so we present only results gathered using the
Lancaster deployment.

Figure 5.12(a) shows the static tag positioning accuracy of the LE when configured to
“default no filtering.” The regression and Kalman algorithm results for the same data are also
shown. Like our regression algorithm, the LE produces a measure of standard error. But,
because we do not know how the LE standard error is calculated, for this comparison we
have not rejected any estimates from the LE or the regression results. With no filtering, the
Ubisense LE performs quite comparably to our proposed algorithms for static tags. Likewise,
comparing Figure 5.12(b) to Figure 5.10, the dynamic accuracy of the LE is similar to our
results if “no filtering” is set.
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5.9 Conclusions and Future work

This chapter has presented a non-linear regression and a Kalman filtering algorithm designed
specifically to process the heterogeneous data which UWB positioning systems are capable
of producing. Both algorithms fuse the different types of raw data (pseudorange, azimuth,
and elevation) effectively. For reliably accurate raw data (as produced by the Lancaster de-
ployment), the algorithms exhibit similar performance, and we would select the Kalman filter
since it provides a more consistent (if at times slightly less accurate) stream of location es-
timates. Supplied with reliable readings, the Kalman filter performs better than regression
as deployment density decreases. For deployments with poor calibration and/or less reliable,
“noisy” readings (as in the Twente data), we would select the non-linear regression algorithm
for its accuracy, despite the high ratios (20–80%) of rejected readings.

We have shown that the algorithms can work well on homogeneous data (pseudoranges
or AOAs), despite the reduction of the information contributing to the location solution.
Under certain configurations, noisy, homogeneous data can be pathological, as in the Twente
pseudorange-only vertical accuracy, or the Twente AOA-only horizontal accuracy. When
working on homogeneous data with reliable accuracy, the algorithms continue to produce
good location estimates, as seen in the Lancaster results.

One may note that the accuracy of the Lancaster horizontal accuracy (typically 8–10 cm
with 75% confidence) is worse than the accuracy of the raw pseudoranges (6 cm). Higher
accuracies could perhaps be achieved by lowering the pseudorange variance estimate (30 cm
in our algorithms), which would have the effect of weighting the pseudoranges more heavily.
However, we wanted to design our algorithms to work on both datasets without modification.
Of course, to squeeze the best performance out of any algorithm, its parameters should always
be set according to the data expected from the particular deployment.

In many of our results, the vertical location accuracy was worse than the horizontal lo-
cation accuracy. As noted previously, this is very much a function of the geometry of the
receivers in our deployments. One can envision receiver deployment strategies which correct
the bias, such as fixing some receivers high on the wall (as in our test deployments), and some
receivers to the ceiling with their boresight facing the floor. The ceiling-mounted receivers’
reported AOAs would contribute more heavily to the horizontal estimate, and the pseudor-
anges (in combination with pseudoranges received from wall-mounted receivers) would con-
tribute much more to the vertical estimate.

We have compared the results of our algorithms with that of the estimates from Ubisense
LE that are based on proprietary algorithm. While the results are quite comparable, repro-
ducing similar results brought us closer to understanding how out-of-the-box commercial
systems work and how effective does the system operate on different environments and cal-
ibration strategies. Our analysis of the raw measurement errors and its relation to different
deployment methods highlights the requirement of expert knowledge for setting up a location
system.

As future work, we plan to explore adaptive Kalman filters. This is particularly interesting
as Kalman performance is heavily influenced by the choice of the model parameters, and
making the filter adaptive can automatically tune the model parameters based on the current
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measurement. Usage of other probabilistic algorithms, for example particle filtering, may
also be a fruitful area for investigation.

The use of a Kalman filter requires a state-space model for the dynamics of the process
to be estimated, the tag’s motion in our case. Although there are several models available to
describe the dynamics of the moving user [41], we use a constant-velocity model. It would be
interesting to explore different models and analyse their tradeoff’s. It would certainly be an
interesting step to evaluate the sensitivity of a particular algorithm to changes in the dynamic
model parameters.

Another avenue of research is to extend the presented algorithms to address online auto-
calibration of reference nodes. Called simultaneous localisation and mapping (SLAM) in
robotics, this can also be used for calibration-sensitive infrastructure to bring us a step closer
in realising easily deployable yet accurate positioning systems.
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CHAPTER VI ∗

Ultrasound-aided pedestrian dead
reckoning for tracking and navigation

Ad hoc solutions for tracking and providing navigation support to emergency response teams
are an important and safety-critical challenges. The solutions based on inertial sensing sys-
tems are promising, but are subject to drift. Based on a brief characterisation of the errors
encountered in inertial-based dead reckoning estimates, we propose navigation and track-
ing solutions based on a combination of foot-mounted inertial sensors and ultrasound bea-
cons. The inherent drift of dead reckoning is addressed by deploying ultrasound landmarks.
Simulation results show that satisfactory guidance performance is achieved by the proposed
approach. However, smoother data is required by the guidance system to provide better expe-
rience for users. To account for this, we formulate two tracking algorithms that are based on
Kalman filtering – (i) using only ultrasound data and (ii) using a combination of ultrasound
and inertial data. We perform evaluation of both the tracking algorithms for data collected
from real deployments for different trail topologies and show how filtering the raw data pro-
duces smoother and robust estimates.

∗Part of this chapter is published with the title, Ultrasound-aided pedestrian dead reckoning for indoor naviga-
tion, In the Proceedings of Mobile Entity Location and Tracking in GPS-less environments (MELT), co-located with
Mobicom, San Francisco, USA, September 2008 [60].
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6.1 Introduction
In this chapter we focus on a firefighting scenario and the use of a sensor network to directly
support firefighters in their rescue mission. Inertial navigation or pedestrian dead reckoning
(PDR) has been applied to tracking and navigation of first responders with promising re-
sults. However, the position error in a purely inertial system increases with time and requires
correction from external sources. A common practice is to periodically use GPS to correct
position estimates [165], but for most indoor scenarios, GPS is unavailable.

We address the problem of positional drift by having the responders themselves deploy
landmarks as they progress into an unknown environment. We specifically use ultrasound
nodes. The breadcrumb trail (as shown in Figure 6.1) can be used to assist the PDR in
guiding the responders back to their starting point, or guiding other responders towards a
victim or an alternative exit.

Localisation is particularly critical in sensor networks conceived as an ad hoc location
system for mobile agents (users, robots), as this involves tracking of the mobile node loca-
tion relative to the location of the deployed nodes. Consequently, localisation has received
considerable attention over the last years, both in WSN research [118] and in mobile and
ubiquitous computing [90]. However, state of the art algorithms for WSN have two key limi-
tations prohibiting their use for localisation in sensor trails: (i) most algorithms proposed for
WSN require multiple beacon nodes with known position, whereas trails are developed from
a single reference beacon and (ii) algorithms generally assume a scattered node distribution
for multilateration, in contrast to a more linear topology along trails.

We use a combination of methods, namely ultrasound and inertial tracking (as shown in
Figure 6.1), in order to tackle the problem of tracking in sensor trails. Such a system can be
extended as an ad hoc location system for tracking and guiding mobile users. Neither method
is sufficient for the task independently. For instance, ultrasound measurements have limited
precision (outlier measurements due to multi-path effects and noise) and reliability (signal
loss between neighbouring nodes due to communication or line-of-sight problems). Along
trails, these limitations are critical due to scarcer connectivity. Inertial tracking has been
shown to give good results for following short trails but is prone to large drift with increasing
distance, and to scaling errors caused by disruptive motion (e.g. tripping, sidestepping, and
sharp turns).

Our general tracking and navigation problem can be split into the following sub-problems:
(i) locating the static nodes (deployed landmarks), (ii) tracking a pedestrian by fusing mul-
timodal data and (iii) guiding the user to an appropriate destination or exit. In this work
we focus on tracking and guiding the user using a combination of ultrasound and inertial
measurements.

Contributions: The three key contributions are as follows:

• A brief characterisation of the errors encountered in an inertial-based pedestrian dead
reckoning solution. We evaluate experimentally the performance of our dead reckoning
system for data gathered from different environments and for different trail topologies.
The characterisation of pedestrian dead reckoning (PDR) errors facilitates the need for
a complementary sensing technology to correct for the drift in the inertial estimates.
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Figure 6.1: Breadcrumb trails, with deployed ultrasound nodes shown as black squares and
boots equipped with equivalent ultrasound node and inertial sensor.

• Simulation of a guidance system to show the feasibility that a combination of iner-
tial and ultrasound sensors would be effective for guiding the user along the trail of
deployed nodes.

• Formulation of two tracking algorithms based on Kalman filtering –(i) using ultrasound
measurements only and (ii) fusing inertial and ultrasound measurements. Characteri-
sation of the dynamic tracking performance of the two algorithms based on traces of
data gathered from real deployments.

6.2 Related work on tracking and guiding technologies
In this section we review some of the related work on tracking and guiding technologies that
were developed specifically for search and rescue operations. Emergency response is an area
where distributed sensing and localisation not only provide extra services to the users but are
intended to save lives. Different sensing technologies have been used in literature to solve
localisation and tracking problems in search and rescue missions. The Fire project [177] has
developed SmokeNet, a wireless network of smoke detectors that are pre-deployed in the
buildings. The firefighter wears a Mica2 Mote [8], a small wearable computer and equipped
with a head mounted display. When a firefighter node enters a SmokeNet enabled building,
the SmokeNet will identify this node as a firefighter and route messages to the node pertaining
to the firefighter’s location, the location of other firefighters, location of the fire, etc. Addi-
tionally the sensors will also monitor firefighters vital information such as heart rate and send
the information to the other firefighters. The Flashlight by Peterson and Rus [155] guides a
person through a sensor network avoiding danger zones by providing tactile feedback when
they are facing the right direction.

The indoor positioning system [73] developed by Thales works similar to GPS but it is
operational indoors: firetrucks parked around a building act as “satellites” that use UWB
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RF signals to locate firefighters inside a building by means of time of arrival measurements.
Although this system might perform well for lightweight residential buildings, UWB may not
penetrate larger structures that extend underground for instance. For this reason we choose
to deploy a physical chain of sensors that can create a link to the outside both for navigation
and communication purposes.

Dead reckoning has the distinct advantage of providing autonomous positioning capa-
bilities and is thus particularly attractive for indoor search and rescue operations. However,
positions provided by this method will unavoidably drift over time due to errors in measure-
ments being integrated [66]. The drift can be reduced by using shoe-mounted inertial sensors
and resetting the velocity to zero at each footfall [149] and by combining the inertial measure-
ments with data from an electronic compass through a Kalman filter in order to avoid drift in
heading [67]. It has been shown that disruptive motion such as side-stepping, back-stepping,
and tight turns which are typical in search and rescue scenarios produce scaling errors and
cause the travelled distance to be over or under estimated. Thus, the estimated position drifts
even more than during normal walking. Despite these limitations, dead reckoning is the only
completely self-contained location technique that requires no prior knowledge of the envi-
ronment. This is why we, and others attempt to address these limitations by combining dead
reckoning with other complementary technologies.

In most cases it is essential to correct position and heading with data from external
sources. GPS is one possibility but only for outdoor navigation with short periods of GPS
outage [165]. Another possibility is to pre-deploy RFID tags at known locations and use
these to correct positions [201]. Indoor location systems such as Ubisense have also been
used in combination with PDR [86]. However there is no guarantee that a building will be
equipped with any particular location infrastructure.

The navigation system developed by Renaudin et al. combines PDR with map matching
in order to prevent drift [166]. Inertial measurement units (IMUs) on the chest and legs
are used to measure movement and posture. The first team to enter the building deploy an
RFID tag on each door frame as they pass through. The position computed by the inertial
navigation system (INS) can then be corrected according to a database of the coordinates
and directions of all doors in the building. The subsequent team members are equipped with
an RFID reader and can therefore determine their positions as they scan each tag. This is
an attractive solution since it is entirely ad hoc. Nevertheless it requires floorplans of the
building and will fail in areas with few doors such as open plan offices or airport terminals.

We believe that RF-based sensors are not suited to indoor navigation because they do not
account for walls. Ultrasound propagation on the other hand is inherently limited by walls
and doors thus guaranteeing room-scale granularity or better. In our system we will use
ultrasound nodes from the Relate project [82] as landmarks to correct for the drift in PDR.
Ultrasound has also been used in several other location systems [160, 188] as mentioned in
Chapter 2.

6.3 Preliminaries
We are basing our work on sensors that are available either as a research prototype or as a
commercial product. Specifically, the ultrasound nodes that we use for the work presented
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6.3 Preliminaries

here is developed as part of an European project called Relate [21]. The inertial sensing unit
is from Xsens Technologies [199]. This section outlines the basics of the devices that are
used for the work presented in this chapter.

Ultrasound Sensor

(a) Ultrasound node used for deployment as
landmarks.

(b) Boots fitted with the flying leads

(c) Particle XBridge with ultrasound node and particle
communication board.

Figure 6.2: Relate ultrasound node as – landmarks, attached to the boots and particle com-
munication board [21].

The ultrasound nodes we use are known as “bricks” (shown on the right in Figure 6.2c).The
sensor board consists of four 40 KHz narrow band ultrasound transducers, a temperature
sensor and a power supply. The core processing and communication is handled by a Particle
Computer with a PIC18 micro controller and 868 MHz RF chip. Communication primitives
are provided by the AwareCon stack [179]. The ultrasound transducers act both as receivers
and transmitters. When the brick is in the receiving mode, it uses data from transducers
on which they detect ultrasonic pulses of sufficient strength and measure peak signal values
and the TOF of the ultrasonic pulses sent by the transmitting device. The smallest TOF is
then used to estimate the range. The AOA estimate is derived using the known orientation
of the transducers on the brick and calculated based on the relative spread of peak signal
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values measured across these transducers. More details on the range and bearing estimation
algorithms from these ultrasonic devices have been previously published [82, 196]. Flash
memory (512K) on the nodes was available as non-volatile storage. This provided a big
buffer capacity until data was read out. For maximum flexibility, instead of using a targeted
peer-to-peer based scheme, all measurements were triggered externally by a data collection
console and stored locally on the nodes for later retrieval. Data stored was automatically
annotated using a local timestamp with a millisecond clock resolution.

Inertial measurement unit

The MTx [199] inertial measurement unit comprises of a tri-axis accelerometer, gyroscope
and magnetometer. The on-board processor computes drift-free 3D orientation. In order to
convert the MTx measurements into meaningful positions, the raw accelerations are rotated
from the sensor coordinate system into the world coordinate system using the rotation matrix
computed by the MTx as shown in Figure 6.3. More details on the characteristics of this
device are available [199]. We detail the algorithm we use to perform dead reckoning based
on the raw measurements (taken using accelerometers and gyroscopes), rotations computed
by Xsens in Section 6.5.1.

Z

Y

X

Local magnetic
North

Local
vertical

World coordinate 
system WX

X
Y

Z

Sensor coordinate
system SX

Figure 6.3: MTx IMU from Xsens –Transformation from sensor to world coordinates via the
direction cosine matrix: xW = RGS xS[199].

6.4 Characterising ultrasound range measurements
In this section we briefly characterise the raw range measurements of the ultrasound nodes
used for the work presented in this chapter.
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6.4 Characterising ultrasound range measurements

Figure 6.4: Placement of ultrasound nodes used for raw measurement characterisation.
Sender node placed at successive points for a few minutes, while the remaining nodes were
made to listen for the ultrasonic transmissions from the sender.
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Figure 6.5: Histogram of a typical set of range measurements gathered between five ultra-
sound nodes placed relatively close to each other at static locations. Each node takes turn to
send out ultrasonic pulses for a few minutes which are received by the nodes in range.
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We placed five ultrasound nodes that are relatively close to each other as shown in Fig-
ure 6.4 with each node having average of three neighbors i.e. an average connectivity of three.
Each time, one of the nodes acts as the sender while the others in range will receive the ultra-
sonic pulse emitted by the sender and calculate the distance/angles as reported [82, 196]. In
total, approximately 4000 ultrasonic pulses were reported by all the receiving nodes. The er-
ror shown is computed as “measured value minus real value”, so that negative distance errors
indicate under-ranging, and positive distance errors indicate over-ranging. From Figure 6.5,
we observe that the distances are typically over-estimated. Range measurements between
four pairs of nodes mostly had errors less than 10 cm, (corresponding to the main gaussian
block in Figure 6.5). In some cases error goes higher up to 40 cm. As with any ultrasonic
ranging device, limited line of sight conditions cause performance degradation. When the
line-of-sight between two devices is fully or partially blocked, several factors can contribute
to the measurement error. Firstly, the tendency of ultrasonic waves to bend around obstruc-
tions can slightly lengthen the measured TOF, reduce the received signal strength, and cause
the received pulse shape to vary from the expected shape of a direct-path pulse. Secondly,
the receiver is more likely to identify multipath signals (i.e. reflections) as the valid ranging
pulse. The brief characterisation of range errors reported here are in accordance with the
characterisation of the nodes range and angle errors as reported by Hazas et al. [82].

6.5 Characterising Pedestrian Dead Reckoning
Dead reckoning is a self-contained navigation technique in which measurements — typically
from inertial sensors — are used to track the position and orientation of an object given an
initial position, orientation and velocity. No infrastructure is required but the position error
will increase over time due to noise. In this section we describe how we convert the MTx’s
raw measurements (taken using accelerometers and gyroscopes) to dead reckoning estimates.

6.5.1 PDR algorithm
Our pedestrian dead reckoning algorithm is similar to other work [34, 67] which uses shoe-
mounted inertial measurement units (IMUs) and applying periodic zero velocity updates
(ZUPTs). In order to convert the MTx measurements into meaningful positions, the raw
accelerations are rotated from the sensor coordinate system into the world coordinate system
using the rotation matrix computed by the MTx (as shown in Figure 6.3). The accelerations
are then double integrated to yield position estimates. In order to reduce the position error
(which increases quadratically with time) we reset the integrated velocities to zero at each
step resulting in linear error with distance covered.

Two phases in walking are identified: the stance phase, when the foot is in contact with
the ground, and the swing phase. During the stance phase the velocity is reset and kept at
zero; during the swing phase the acceleration is double integrated. Our algorithm detects
the stance phase of each step by applying a threshold to the product of the norm of the
acceleration by the norm of the rate of turn as previously suggested [34]. If this product is
below an empirically determined threshold for more than 0.2 seconds then a stance phase is
detected. When the product rises above the threshold, again a swing phase is detected. This
is illustrated in Figure 6.6. If some steps are taken at a faster pace then the stance phase may
not always be detected and some opportunities for ZUPTs will be missed.
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In all of our experiments we sampled orientation and inertial data at 100 Hz, which is
the maximum speed at which the onboard processor can compute orientation. Our algorithm
also performs with similar results at 50 Hz.

Swing 
phase

Stance
phase

500

-500

Figure 6.6: PDR algorithm: each step has a stance phase and a swing phase. Velocity is
reset to zero during the stance phase, and acceleration is double integrated during the swing
phase.

6.5.2 PDR Evaluation
In this subsection we report the performance of our PDR algorithm with experimental data
gathered from different environments and for various trail topologies.

Experimental setup

In all the experiments the IMU was firmly attached under the laces of the user’s shoe. We
had an on-line implementation of the algorithm described in Section 6.5.1, recording the
user’s trajectory on a hand-held computer connected to the IMU. One set of experiments was
run in a university building (Lancaster University’s, Infolab). We considered different trail
topologies: straight line (88 m in total, Figure 6.7a ), L-shaped (54 m in total, Figure 6.7b)
and rectangular (11.5 m in total, Figure 6.7c). These paths were perambulated by two users.
Another set was run in a similar building in another institute (TZI, Bremen). We walked
along a long corridor, entering several offices along the way (140 m in total, Figure 6.7d).
A third set was run in a large industrial workshop. A single user walked a complex path of
over 200 m around heavy machinery (Workshop Bremen, BIBA1, Figure 6.8). A final set
was run in the office corridors around the workshop (Workshop Bremen, BIBA2, 220 m in
total, Figure 6.7e. These paths were perambulated by six different users, three times each. In

131



Ultrasound-aided pedestrian dead reckoning for tracking and navigation

all the experiments the user returns to the starting point. The recorded paths shown here are
each a typical example from a particular set of experiments.

Error analysis

We observe two major sources of errors in the PDR approach — error in distance and error in
heading. The error in distance and heading together will lead to a large error in the position
(as can be seen in Figure 6.7). For the straight line in Figure 6.7a, the estimated distance drift
is +2 percent of the total travelled distance. For the L-shaped path in Figure 6.7b we get an
error of -8 percent of the total travelled distance. For the rectangular path in Figure 6.7c, we
get a closed loop where the starting and ending points are the same, but the error is -7 percent
of the total travelled distance. We notice that heading errors tend to occur when the user does
a 180 degree turn.

Figures 6.7d and 6.7e show that the performance of PDR can be impacted significantly
by heading errors. We tested it for cases where the user walks along a corridor and enters
several rooms along the way; the path shown in Figure 6.7d starts well but severely drifts off
after 40 metres. The drift happens in one particular place and then again just after the 180
degree turn. For the U-shaped path in Figure 6.7e, the error in heading is extreme, due to
interference from machinery in the nearby workshop. All experiments in the same corridor
at BIBA2 show an almost identical error pattern, suggesting that there is significant magnetic
interference in certain locations.

Although some distance drift is inevitable due to the integration of noise and offsets
in the raw sensor data, we also believe that most of the distance error is due to the MTx
incorrectly estimating its orientation as explained by Foxlin [66]. Thus we might interpret
some of the forward motion as vertical motion, or vice-versa. Since MTx is a commercial
product we have very little information about how the different sensors are used in computing
the orientation, and almost no control over any of the internal parameters. Based on our
experiments in different environments, we assume that most of the heading errors are due
to metallic objects or magnetic fields interfering with the MTx magnetometers since these
extreme heading errors occur systematically, in the same locations. We also note that when
using the system outdoors in an open space the results are much better and the orientation
drift is negligible. So the magnetometers help in outdoor situations where they accurately
determine magnetic north but indoors they can cause heading errors.

6.5.3 Impact on guidance
We consider the consequences of these observations on guiding a user along a path. The
biggest problem we observe in the PDR approach is the drift in orientation. Even if the
position is corrected by some other sensor modality, an error in the heading implies that we
cannot guide the user because we do not know which direction they are facing. Drift in
the distance estimates are unavoidable but they remain small and consequences for guidance
are less important. The type of errors we have observed make it difficult to quantitatively
evaluate performance which can vary from “almost perfect” to “unusable” depending on the
level of magnetic interference. In all the cases, we observed that most individual segments
of the recorded paths are very accurate — even a spiral staircase (Figure 6.8) — but that a
strong heading error occurs at particular locations. Manual correction of the position and
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PDR trajectory

Real trajectory

Start and Finish

(a) PDR straight line path, Lancaster University’s Infolab

PDR trajectory

Real trajectory
Start and Finish

(b) PDR L-shaped path, Lancaster University’s Infolab

PDR trajectory

Real trajectory

(c) PDR rectangular-shaped path, Lancaster University’s
Infolab

Figure 6.7: Results of PDR for different trail topologies (continued on next page).
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PDR trajectory

Real trajectory

Start and Finish

(d) PDR path with user entering offices along the corridor, Bremen Insititute, TZI

PDR trajectory

Real trajectory

Start and Finish

(e) PDR path “worst case scenario” with strong magnetic interference
due to nearby machinery, Workshop Bremen, BIBA2.

Figure 6.7: Results of PDR for different trail topologies (continued from previous page).
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Start and End point

PDR estimated path with manual corrections
Actual path
Walking direction

Approx.
10m

Figure 6.8: Workshop Bremen, BIBA1, with manual correction applied to position and head-
ing at each turn.

heading at each turn can give good results as shown in Figure 6.8. The challenge is to make
these corrections automatically.

6.6 Simulation of a guidance system
We plan for search and rescue teams to deploy small ultrasound beacons as ad hoc landmarks
along their path. These beacons can then be used by other teams or by the same team to
assist them on their way back. The team members wear boots equipped with ultrasound
transmitters (as shown in Figure 6.2b) that can be located by the beacons, and inertial sensors.
In this section, we investigate how such a system might perform through simulations.

6.6.1 Measurement model
We model the ultrasound and inertial measurements based on our observations of data from
deployments in realistic environments.

Ultrasound measurement model

The ultrasound location estimates are very noisy. We model the range and bearing measure-
ments as Gaussian with standard deviations of 5 cm and 30 ◦ respectively [82]. A fraction
of the range measurements are large outliers. Because the ultrasound location estimates are
so noisy we only use them to correct the PDR estimates if the discrepancy between the ultra-
sound and PDR estimates is greater than a threshold (on the scale of a metre or more). If the
PDR location estimate and the ultrasound location estimate are consistent then we continue
to rely on the PDR since this will give smoother results. If the estimates are not consistent
then we trust the ultrasound location estimate. The ultrasound location estimate is used as the
new location and the heading of the PDR is adjusted using a simple trigonometric formula
which returns the angle between the current (wrong) location estimate, the last reliable lo-
cation estimate, and the new (presumably more accurate) ultrasound location estimate. This
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relation gives good results in practice, but only if the ultrasound measurements are frequent
enough. For instance, when we placed ultrasound beacons only at the corners in a path, the
users are out of ultrasonic measurement range for extended periods of time.

Pedestrian dead reckoning model

The successive positions of the user are not known in advance and the error in heading is
dependent on position, so it must be calculated dynamically. Based on our experimentation
detailed in Section 6.5.2, we conclude that the error in heading is mostly due to magnetic
interference. However, the internal Kalman filter of the inertial measurement unit essentially
implies that the heading is not only affected by the local magnetic field but also by the mag-
netic field at previous locations. In our model we define sources of magnetic interference
and for each source, a radius and an amplitude. When the user moves closer to the source
than the given radius then the heading is modified by the given amplitude. The sign of the
modification in heading depends on the direction that the person approaches the source. This
empirical model illustrated by Figure 6.9 replicates the effects that we have observed during
our experiments (as in Figure 6.7e).
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Figure 6.9: Magnetic interference model affecting PDR estimates.

Guidance algorithm

One important goal of our work is to guide search and rescue personnel to follow a predefined
path. In practice it could be a path that was walked previously. The initial scenario we
envisage is a wide open area such as a dark underground parking lot or an empty smoke-
filled warehouse where a path has already been defined as the team went in and deployed
ultrasound nodes along the path. As the team attempts to return to the exit back along the
path they are guided by an arrow on a HMD, showing them which way to walk. The path
to follow is defined as a series of segments. Given the estimated position of the user we find
the point on the path that is closest to their estimated position by projecting the estimated
position onto the successive segments of the path. Then we direct the user to a point that is a
few metres ahead along the path as shown in Figure 6.10.

In order to check the feasibility of this system we assume that the user always follows
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estimated
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look

Figure 6.10: Guidance algorithm: (1) estimate the person’s position, (2) project onto path,
(3) find target position, (4) compute guidance angle.

the direction provided. This shows us how often they reach their destination and how often
they stray too far from the path and get lost. The simulator is event-based: ultrasound and
inertial measurements are generated periodically (every 200 ms and 10 ms, respectively) and
processed by the fusion algorithm to estimate the user’s position. Periodically (every 2 s) the
guidance system computes which direction the user should travel and the user takes a step in
that direction, effectively creating a feedback loop. A simulation run is considered successful
if the person gets within a short distance of the end of the path.

6.6.2 Results and Evaluation
If we run a simulation with PDR alone, that is without using the ultrasound measurements
to correct position and heading, the user will be guided to the wrong location. In the sample
simulation shown in Figure 6.11 the PDR wrongly estimates the person to be too far South
and so they are guided towards North. The simulation ends without the person reaching
the destination because the system wrongly believes that they are already there. However, if
ultrasound measurements are used to correct the position estimates, the person is successfully
guided to the end of the path as shown in Figure 6.12.

Initial results show that if we do not use ultrasound measurements enough, the user will
be guided away from the path and out of range of the beacons due to incorrect position and
heading estimates. If that happens in the simulation, the user is lost unless by chance they
stray back into range of the beacons. In reality, new nodes could be automatically deployed
to create a new branch in the path or some special action could be taken if this occurs, at the
very least by warning the user. If we use ultrasound measurements frequently then the user
is likely to reach the end of the path safely.

In another batch of simulations, we introduce different levels of uncertainty to the ultra-
sound beacon positions and orientations and see how this affects the success of the guidance
system. We discover that even for large errors in the estimated beacon positions the user can
still reach their destination. Errors in the estimated beacon orientation are even less important
as long as the user’s estimated position does not drift too far from their real position. This is
good news as it means that the requirements for locating the beacons should be achievable.
As expected, improving the accuracy of beacon locations and orientations does improve the
success rate, and thus this is one way of achieving a more reliable system. Simulations also
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confirm that increasing beacon range and beacon density improve success rates.
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Figure 6.11: A simulation run showing the user following guidance along a trail but failing
to reach the end because of drift in the PDR estimates.
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Figure 6.12: A simulation run showing the user successfully following guidance along a trail,
their position is estimated with PDR corrected by ultrasound beacons.

The simulation results are promising and show that by using both PDR and deployed
ultrasound beacons, we would be able to provide sufficient information to guide the users
along a predefined path in an open space. We also showed through simulations that such a
combination can even work in the presence of magnetic interference and noisy ultrasound
measurements.

It is important to realise that given the life-critical field of application, such a system
needs to be extremely reliable. Success rates of ninety percent are not enough or the system
will not be trusted and the users will continue to rely on other navigation methods. If perfectly
successful guidance proves unrealistic, then it will be necessary to investigate other ways of
informing the user about the current situation, about what has gone wrong, or providing a re-
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liable way to retreat back to a previously known position. Physically deployed beacons have
the advantage of being visible, especially if the casing is carefully designed and incorporates
lights or sirens, and thus can provide a very robust fallback navigation method. We have
yet to study how well a real person is able to follow such guidance as provided by our sys-
tem with an online implementation. We may require smoother guidance data for real users.
This could be provided by more sophisticated fusion algorithms based on Kalman or particle
filters.

6.7 Tracking algorithms
In this section we formulate tracking algorithms that are based on Kalman filtering. We inves-
tigate two different cases: (i) Kalman filtering of ultrasound (range and bearing) only and (ii)
Kalman filtering of ultrasound (range and bearing) and inertial sensing data. In both cases we
assume that the deployed nodes locations are available. The first algorithm we describe uses
a Kalman filter to filter out the noise in the raw ultrasound data and by itself facilitates track-
ing of the mobile user following the trail of the deployed ultrasound beacons. The second
tracking algorithm highlights how measurements from two different sensing media (ultra-
sound and inertial measurements) can be fused by a Kalman filter. The algorithms presented
are inspired by single-constraint-at-a-time (SCAAT) tracking as proposed by Welch [192]
where incomplete data can be used for location, as opposed to regression, or triangulation
and trilateration methods where measurements are processed in batches and must contain
enough information to uniquely specify a solution. The SCAAT method blends individual
measurements that each provide incomplete constraints into a complete state estimate. This
approach would be better-suited for sensors in a trail topology, as there are not enough con-
straints to solve for position when the deployed nodes are not well-connected due to the
scarce connectivity along linear trails.

6.7.1 Kalman filtering of ultrasound range and bearing data
We present our use of a Kalman filter to track a mobile user along a trail of ultrasound nodes
predeployed at “known” locations. The user wears an identical node on the toe of their shoe.
This node emits pulses approximately five times per second. The deployed nodes hear the
pulses and determine the range and bearing to the mobile node as described in Section 6.3.
As reported by Hazas et al. [82] the bearing estimates are very noisy, thus using the raw
measurements directly to estimate the position of the mobile node will give a rather rough
trail. Smoothing the trail should have the combined benefit of making the data more pleasant
to visualise on-screen (e.g. overlaid on a floor plan), making the position estimates more
accurate, and enabling us at a later stage to estimate the heading of the user.

Overview of Algorithm

We formulate an Extended Kalman Filter (EKF) using a state vector x̂k with four variables,
two position variables u, v and two velocity variables vu, vv. We transform the reported
range/angle measurements to Cartesian coordinates. After any discrete time step, the fil-
ter has an idea of its state and how confident it is in that state. The filter then corrects the
predicted state based on the most recent measurements (range/angles converted to position)
and its internal state. Figure 6.13 depicts the schematic representation of the algorithm.
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Conversion to 
Cartesian coordinates 
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Ultrasound
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User’s location  
and velocity 

Figure 6.13: Schematic representation of Kalman filtering of ultrasound range and bearing
measurements.

Similar to the algorithm presented in Chapter 5 we use an Iterative Extended Kalman
Filter (IEKF) [144], with the difference that only one measurement per time-step is used
in estimating the state vector (position and velocity of the user), as opposed to multiple
measurements.

The filter is initialised with a posterior state estimate x̂−k and uncertainty P−k . We set
the initial state estimates based on the first measurement. Each measurement consists of a
timestamp, the position of the deployed node that took the measurement, and the range and
bearing to the mobile node. We chose to use a small but non-zero value for P−k , meaning that
there is a little uncertainty in the defined initial state.

We use a constant-velocity model, i.e. it is assumed the mobile node moves at constant
speed between time steps (one measurement to another) but in between two measurements
it is subject to additive Gaussian velocity centered on zero and of standard deviation 3 mm/s
(empirically chosen). Thus, the new state estimate x̂k will depend on the previous state
estimate x̂k−1, constant velocity vxk and a noise term wk (as in, x̂k = x̂k−1 +vxk dt+wk). In order
to predict the state using the measurements, we will have to describe how the measurements
are related to the state. The measurement model ẑk(= Hx̂k + vk) describes how measurements
depend on the state estimates x̂k. H is the Jacobian matrix with partial derivatives of the
measurement function with respect to the state x̂k. The measurement function here represents
the range and angles converted to position estimates:

ẑk = [xb + range ∗ cos(angle − ob)

yb + range ∗ sin(angle − ob)]
(6.1)

where xb, yb, ob are the deployed beacons x, y coordinates and orientation and range and
angle are the measured range and angles between the deployed node and the mobile node.

The predicted error covariance (P−k ) and the state estimate (x̂−k ) for a time-step is given
by:

x̂−k = Ax̂k−1 + Buk

P−k = APk−1AT + Q
(6.2)

Here, A is the Jacobian matrix and Q is the process noise covariance.
The filter computes the posterior state estimate by taking the prior state estimate and

combining with the Kalman gain Kk times the difference between the actual measurement
(i.e. position) and a measurement prediction (ẑk = Hx̂k + vk). This is called the innovation or
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residual r. If the innovation is zero, then the predicted state estimate exactly reflects the real
measurement. But if there is a difference between the predicted and the observed measure-
ment, then the prior state estimate needs to be updated. In Eq. 6.3, Kk determines to what
extent the innovation should be used in the posterior state estimation. Based on the measure-
ment noise R and the prior error covariance P−k , the gain can favour the innovations or the
measurements more. The measurement noise R for the position converted from range/angles
is set to be equal to the measured range of the node.

Kk = P−k HT (HP−k HT + R)−1

x̂i+1
k = x̂−k + Kk(zk − H(x̂−k − x̂i

k))

Pk = (I − KkH)P−k−1

(6.3)

In Eq. 6.3 the Jacobian matrix H is evaluated at the most recent intermediate state estimate
x̂i

k (difference between the iterative extended Kalman filter (IEKF) and Extended Kalman
filter (EKF)). After a number of iterations, or when the intermediate state estimate does not
differ with more than a certain threshold from x̂i−1

k , the filter sets the posterior state estimate
and estimates its posterior uncertainty. It is important to note that the IEKF computes the
uncertainty in the state only after it finds the most accurate intermediate state estimate.

6.7.2 Kalman filtering of ultrasound and inertial data
We present our use of a Kalman filter to track a mobile user along a trail of ultrasound nodes
predeployed at “known” locations using both inertial and ultrasound measurements. The
user wears an ultrasound node on the toe of their shoe (as before) and an inertial sensor is
attached to the foot (as shown in Figure 6.15(b)). The ultrasound node emits pulses approxi-
mately five times per second and inertial measurements are sampled at 100 Hz. The inertial
measurements are recorded in “step length” i.e. the distance moved per time step and “step
heading” i.e. the difference in heading between two time steps. Based on our observations
reported in Section 6.5, where individual steps are not subject to huge drifts and the drift in
inertial estimates occurs incrementally, we use the Kalman filtered ultrasound measurements
to correct for the drift in inertial sensors.

We formulate an EKF using a state vector x̂k with four variables, two position variables
u, v, and two correction variables ψ and scale, where ψ refers to the correction factor to
be applied to heading estimate and “scale” refers to the correction factor to be applied to
distance estimates of the inertial sensors. After any discrete time step, the filter has an idea
of its state and how confident it is in that state. The filter then corrects the predicted state
based on the most recent measurements (range/angles converted to position as explained in
Section 6.7.1) and its internal state. Figure 6.14 depicts the schematic representation of the
algorithm.

The filter is initialised with a posterior state estimate x̂−k and uncertainty P−k . We set
the initial state estimates based on the real position measurements reported by the Ubisense
system deployed in the same test area. Since we use a SCAAT implementation, we order the
measurements based on the recorded time-stamps as to whether the current measurement is
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Figure 6.14: Schematic representation of Kalman filtering of ultrasound range and bearing
fused with inertial measurements.

an ultrasound measurement or inertial measurement. Each ultrasound measurement consists
of a timestamp, the position of the deployed node that took the measurement, and the relative
range and bearing to the mobile node. Each inertial measurement consists of a timestamp,
the step distance (difference between the current and previous position) and step heading
(difference between the current and the previous heading). We chose to use a small but
non-zero value for P−k , meaning that there is a little uncertainty in the defined initial state.

The filter operates in the following fashion. If the current measurement is an ultrasound
measurement, the position and correction to be applied to the heading i.e. ψ and the error
in distance is estimated i.e. “scale” and updated as part of the filter estimates. If the sub-
sequent measurement is an inertial measurement, it uses the ψ and scale estimated by the
filter when the previous ultrasound measurement was received and add this correction factor
to the current inertial step length and step heading. The idea here is to correct the inertial
step length and heading based on the correction factor that is estimated during the previous
ultrasound measurement. Basically, when the measurement is an inertial measurement, the
filter does not update the state but corrects the inertial estimates. In doing so, the drift of the
inertial measurements is effectively scaled based on the correction factor determined by the
ultrasound measurement. Using two different types of measurements (ultrasound and iner-
tial) with varying sampling rate (5 Hz and 100 Hz), increases the overall update rate of the
system. In principle, if the ultrasound measurements are frequent enough, the error in inertial
estimates will be minimised.

6.8 Performance Evaluation of Tracking algorithms

In this section, we report the performance of the tracking algorithms that were described in
Section 6.7. First, we outline in Section 6.8.1, the tesbed used for collecting data (ultrasound
and inertial measurements) and the groundtruth or reference system used for the evaluation
purposes. We then summarise the performance of the tracking algorithms in Section 6.8.3.

142



6.8 Performance Evaluation of Tracking algorithms

(a) Deployed nodes (in black) along the corridor

(b) Ultrasound node (blue) and Xsens inertial unit (orange)
firmly attached to user’s foot

(c) Snapshot of data collection performed by the user
within the lab. Deployed ultrasound nodes are shown as
black boxes on the floor.

Figure 6.15: Experiment and data collection.
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6.8.1 Data collection and Groundtruth system
Twenty-one ultrasound nodes were deployed covering an area of approximately 15× 9 m
(refer to Chapter 5, Figure 5.2). The positions of the deployed nodes were surveyed a pri-
ori using a tape measure with reference to a wall. Eleven of the nodes were deployed in a
lab which was relatively empty except for some desks along the corners of the room; three
were placed in rooms along the other side of the corridor representing typical office spaces;
and the remaining seven were placed in the corridor connecting the rooms and the lab. In
all the experiments the inertial sensor and an ultrasound node which was transmitting ultra-
sonic pulses were firmly attached to the user’s foot as shown in Figure 6.15(b). Along the
trail-deployed nodes, measurements were gathered by two users (see Figure 6.15(c)). We
considered different trail topologies as shown in Figure 6.17 – some of the path is along a
corridor entering several offices along the way covering most of the deployment area, and
some were within the lab. The users travelled different trajectories at least five times and
occasionally stopped at some predefined points (as can be seen by a cluster in Figure 6.17)
so as to see the performance over a longer period of time. We report for our analysis six such
trajectories – with each path having a trace approximately seven minutes in duration.

Groundtruth or reference system

In order to validate our tracking algorithms we need to compare the results to some ground
truth. We use the results of the Ubisense Location Engine [182] (refer to Section 5.8, Chap-
ter 5 reporting the Ubisense performance) to report the groundtruth measurements. In addi-
tion to the IMU and ultrasound node, the users also carried Ubisense compact tag to gather
the groundtruth for validation purposes. Although the Ubisense estimates will have some er-
ror, they are close enough for the purposes of judging the validity of the tracking performance
(especially to see the shape of the trail). Additionally, since we enabled extra filtering [183]
as opposed to the default Ubisense location algorithm, with no filtering, the estimates we use
for comparison are more likely accurate than the results reported in Chapter 5 for the Twente
set up. Figure 6.16 illustrates the effect of filtering and no filtering of Ubisense estimates with
reference to reactivision camera tracking system, for the same path illustrated in Chapter 5
(Fig 5.9). Filtering has the effect of producing tighter estimates which more likely corre-
spond to the real path. Ofcourse, the best reference system would have been to use a camera
tracking system as we had in Chapter 5, but due to the limited range (thus, requiring dense
network of camera’s), we relied on Ubisense system as it covers much larger area (spanning
multiple rooms and corridors) without having to instrument many receivers (Ubisensors).
Also, for this specific application it suffices to see if the user is located correctly within a
room.
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Figure 6.17: Test path represented by Ubisense estimates (a) Square shaped path within the
lab with eleven deployed ultrasound nodes, (b) L shaped path starting at the lab and walk
to the room along other side of the corridor and back to the lab, with pauses at some of the
points, (c) straight path walk between multiple rooms along either side of the corridor, (d)
walk along the boundary of the rooms, (e) arbitrary path within the lab and (f) walk along
the rooms with momentary pausing.

146



6.8 Performance Evaluation of Tracking algorithms

6.8.2 Effect of filtering
Figure 6.18 (a) shows measurements taken with a node which was attached to the end of a
stick and moved slowly along the floor of a corridor and into a lab equipped with ten deployed
nodes. The “red” line indicates the raw measurements (range/angles converted to position)
and plotted based on the order in which the measurements were received. The “blue” line
represents the Kalman filtered trail.

−2 0 2 4 6 8 10 12 14
−4

−2

0

2

4

6

Distance along X (in metres)

D
is

ta
nc

e 
al

on
g 

Y
 (

in
 m

et
re

s)

Kalman filtered estimate
Ultrasound nodes
US raw measurements

(a) Slow movement and good line of sight (experimental data). The path included walking
in-between the deployed nodes.

Figure 6.18: Unfiltered ultrasound positions and Kalman filtered trail (experimental data)
demonstrating the effect of filtering on data gathered under good line-of-sight and partially
blocked line-of-sight conditions (continued on next page).

It is interesting to consider how the Kalman filtered ultrasound data look in comparison to
the raw ultrasound range/angle measurements converted to position. Refering to Figure 6.18,
we can observe that the filtered data is much cleaner in comparison and could almost be
used alone for estimating the heading of the user. Apart from filtering the data, the Kalman
filter has the added benefit of being able to generate position estimates even in the absence
of measurements.

Comparing this with Figure 6.18 (b), which shows measurements taken with a node
which was attached to the toe of a person’s shoe, that person then walked at a normal pace
along a corridor and back. Much less data was gathered during the second experiment due
to the speed of the walk; this was caused by the method used for triggering the ultrasound
pulses and the way that a person’s leg blocks the line of sight between the mobile node and
the deployed nodes. However in both cases, the filtered data is smoother than the raw data
and could be used for estimating the heading of the user.
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6.8.3 Tracking Evaluation

In this section we report the performance of both the tracking algorithms presented in Sec-
tion 6.7. Table 6.1 and Figure 6.19 summarise the performance of both the algorithms by
comparing fiftieth and seventy-fifth percentile errors calculated with respect to the ground
truth (i.e. Ubisense estimates). Inertial combined with ultrasound performs well in all cases
better than Kalman filtered ultrasound only; and accuracy is typically improved by about
1.5 m.

Figure 6.20 shows the results of tracking performance of both the algorithms (i) Kalman
filtered ultrasound only and (ii) Kalman filtered ultrasound fused with inertial measurements
for all six different paths that we illustrate in Figure 6.17. In general the error in both the
estimates decrease periodically, confirming that the moving device was getting closer to the
deployed ultrasound nodes (refer Figure 6.20). However the inertial error seems to increase
gradually (Path c and Path d). This is because of the gradual drifts which we have observed
in Section 6.5.

Path Data type 50% 75%
conf. level (m) conf. level (m)

(a) US 2.34 4.04
US+inertial 2.35 3.70

(b) US 2.43 5.68
US+inertial 2.11 4.57

(c) US 2.78 5.23
US+inertial 1.45 3.46

(d) US 4.07 5.73
US+inertial 1.06 2.38

(e) US 2.78 4.47
US+inertial 1.65 2.8

(f) US 4.94 6.36
US+inertial 3.76 4.92

Overall US 3.25 5.24
(a)–(f) US+inertial 1.93 3.70

Table 6.1: Tracking performance summary. All values shown pertain to the tracking results
of each of the six “walking” traces shown in Fig 6.17 (a)–(f).

Figure 6.21 shows the estimated path of both the algorithms with Ubisense estimates
plotted for the purposes of comparison. In most cases, we notice that the shape of the resul-
tant trail matches to the Ubisense result and the PDR combined with ultrasound trail is a little
smoother and tighter when compared to the ultrasound-only trail. In particular, we observe
that the Ubisense results are much smoother than the presented algorithms, re-assuring that
the groundtruth we have used is more likely closer to the real path. Also, from the Figure 6.21
we see that both the algorithms can perform well for the intended application of locating the
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user within room-level. The other benefit of fusing multiple modalities comes with regard
to the update rate; since ultrasound measurements are sampled only every 5 Hz approxi-
mately while the inertial sensors are sampled at high rate (typically 100 Hz), fusing multiple
modalities increases the update rate of the resultant tracking algorithm. Both algorithms’ will
improve if the beacon measurements are supplied more frequently.
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Figure 6.19: Tracking performance of Kalman filtered ultrasound only and ultrasound fused
with inertial measurements (all paths included).
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(b) Path-b error
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(c) Path-c error

Figure 6.20: Error with respect to Ubisense (reference) estimates of Kalman filtered ultra-
sound and inertial estimates and Kalman filtered ultrasound estimates (continued on next
page).
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(d) Path-d error
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(e) Path-e error
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(f) Path-f error

Figure 6.20: Error with respect to Ubisense (reference) estimates of Kalman filtered ultra-
sound and inertial estimates and Kalman filtered ultrasound estimates (continued from pre-
vious page).
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(a) Square path within a lab
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(b) Entering rooms along the corridor

Figure 6.21: Path estimated by the (i) Kalman filtered ultrasound and inertial data combined
and (ii) Kalman filtered ultrasound for different trail topologies (continued on next page).
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(c) Path with traversing along the boundaries of the room
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(d) Straight Path, entering rooms along the corridor

Figure 6.21: Path estimated by the (i) Kalman filtered ultrasound and inertial data combined
and (ii) Kalman filtered ultrasound for different trail topologies (continued from previous
page). 154
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6.9 Conclusions and Future work
In this chapter we address the use of ultrasound and inertial sensing technologies to aid
firefighters by providing navigation and tracking solutions. Based on the understanding of
the errors encountered in the PDR estimates, we looked into complementary technologies that
can correct for the drift. Specifically, we used ultrasound sensors which have the capability to
measure relative range and bearing. We showed the potential effectiveness of the combination
of inertial and ultrasound measurement through a simulation of a guidance system. The
simulation results of the guidance algorithm are promising and show that using both PDR
and deployed ultrasound beacons to estimate a person’s position we would be able to provide
sufficient information to guide them along a predefined path even in presence of magnetic
interference and with noisy ultrasound measurements.

We argue that smoother data is better for giving guidance in real-time to users. To as-
sess the feasibilty of obtaining smoother data we formulated tracking algorithms based on
Kalman filtering. We particularly focused on two types of tracking algorithms: (i) Kalman
filtering of ultrasound range and angle measurements and (ii) Kalman filtering of inertial
and ultrasound range/angle data. Both algorithms have been experimentally evaluated for
different trail topologies.

Both algorithms we presented used a SCAAT-based implementation [192] of the Kalman
filter, i.e. using a single measurement at a time to solve for position. The results of the ul-
trasound fused with inertial sensors is clearly a win over only inertial data. We also showed
how ultrasound fused with inertial measurements have improved accuracy over Kalman fil-
tered ultrasound-only measurements. This is because the error in inertial estimates starts to
grow gradually, and periodic corrections from ultrasound estimates will help in minimising
the drift. The fusion of ultrasound combined with inertial not only improves the accuracy, but
will increase the update rate of the overall system. However, the increased processing would
also consume more of the mobile device’s resources. Analysing the tradeoffs is a subject of
future investigation.

While we have used SCAAT-based algorithms, other types of algorithms that use a batch
localisation approach which considers all the data collected by the mobile node or usage of
other Bayesian methods such as particle filtering will be a subject of future investigation.

The work presented here is based on the assumption that the deployed ultrasound beacons
location are known. A major challenge is calibrating the positions of the ultrasound beacons.
We plan to address this as a simultaneous localisation and mapping problem (SLAM). This
is a common topic in robotics but due to the nature of movement in pedestrian navigation and
the trail topology of the beacons the solutions will be different.

155



Ultrasound-aided pedestrian dead reckoning for tracking and navigation

156



CHAPTER VII
Conclusions

At the core of ubiquitous computing is context awareness, the concept of sensing and react-
ing to dynamic environments and activities. Location is a crucial ingredient of context and
much research in the past decade has focused on location-sensing technologies, location-
aware computing and location-based applications. This thesis focuses on formulation of
localisation algorithms with the capability of fusing readings from multiple modalities. In
Chapter 1 we stated that the main research question of this thesis was to investigate ways to
bring performance improvement by incorporating multimodal data.

Although there are many performance parameters, the core assessment criterion for any
location system is accuracy. In this thesis we have looked into a variety of ways to improve
accuracy. The methods range from simple smoothing and filtering to sophisticated fusion and
tracking. The simplest smoothing and averaging techniques provide modest improvements.
On the other hand, Kalman filtering-based approaches offer the ability to fuse readings across
different sensing technologies and incorporate motion models to improve accuracy signifi-
cantly. Kalman filtering also works consistently well, amidst the absence of sensor readings,
thus allowing tracking capability. Fusing multiple modalities not only improves accuracy,
but also improves other desired properties like update rate, reduction in beacon density, in-
creasing coverage, etc.

7.1 Contributions
We summarise here the main contributions and conclusions of the work presented in this
thesis.

Taxonomy and survey of location systems

In Chapter 2 we have reviewed the basic principles of localisation and the classification of
the state of the art based on our taxonomy. From our detailed survey, it was evident that no
location system is error free and suited for all situations. For example, pure inertial sensors
suffer from drift, ultrasound sensors require clear line of sight and magnetic sensors are
affected by ferromagnetic and conductive materials in the environment. Thus, we rationalised
multimodal localisation as one of the promising ways to improve location accuracy. Apart
from improving performance of the location system in limited measurement volumes, fusion
of heterogeneous sensing systems will ultimately allow people to move from place to place
without loss of location knowledge, thus minimising the accuracy vs. coverage tradeoff. We
have applied our taxonomy in Chapter 3 to choose an appropriate location sensing technology
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that meets the needs of a specific application.

Characterisation of raw sensor data

We have performed a detailed characterisation of a wide variety of measurements that are
typically used for localisation. Thorough understanding of the behaviour of signal strength
captured from WLAN enabled us to develop several motion inferencing algorithms. The raw
error characterisation of individual sensing modalities (pseudoranges and angles) helped us
to comprehend the actual benefits of fusion and to design “controlled” algorithms that work
with both perfect and less than perfect data. Additionally, knowing the individual data char-
acteristics together with their strength and weakness, enabled us to make appropriate choices
in selecting different modalities (drift in inertial sensors corrected by ultrasound range mea-
surements) for improving the accuracy. The other benefit of characterisation is that the error
distributions required by the positioning algorithms to function efficiently can be derived by
having a closer look at the underlying data. All our analysis is performed on sensors and tech-
nologies (either commercially available or as a research prototype) that are being extensively
used by the wider community. So at large, thorough characterisation of common measure-
ments like what we have presented in this work can serve as a guideline in understanding the
characteristics of some of the demanding location technologies that exist today.

Algorithms for inferring motion and location from WLAN RSSI

In Chapter 4, we have presented novel algorithms for inferring the movement of a device
based on observing the fluctuations in the signal strength gathered from WLAN access points.
Our motion detection algorithm that is based on frequency domain analysis reports a preci-
sion and recall over 90% in distinguishing “still” and “moving” states. We have demonstrated
how commonly used location algorithms like Centroid and Weighted centroid could benefit
from knowing the motion of the device to be located and by using the history of past loca-
tion readings to improve accuracy. The solution we have provided is smoothing of location
estimates based on motion derived from RSSI. We have evaluated the performance of algo-
rithms against traces of RSSI data collected from different environments. Our results show
that addition of motion derived from RSSI provides modest improvements. Incorporating
map-matching methods and/or data from inertial sensors, in combination with probablistic
methods like particle or Kalman filtering might be a suitable venue for future research.

Positioning algorithms using heterogeneous data

Chapter 5 and Chapter 6 have demonstrated the benefits of fusion and tracking on sophis-
ticated data such as the TOA, AOA and TDOA measurements gathered from some of the
most demanding technologies that are in use today, namely: ultrasound, inertial and ultra-
wideband.

• Specifically, in Chapter 5 we have addressed the benefit of heterogeneous observations
(pseudoranges and angles) gathered from a commercially available ultra-wideband sys-
tem. We have presented positioning algorithms that are based on an error minimisation
approach (non-linear regression) and a state-estimation approach (Kalman filtering) us-
ing heterogeneous data collected from two very different deployments – mimicking a
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real-world deployment vs. an ideal deployment. We demonstrated that the presented
algorithms work both with perfect and imperfect data and highlighted the impact of
calibration on accuracy of the location estimates. For accurate raw data, the algo-
rithms exhibit similar performance, and we would select the Kalman filter since it
provides a more consistent (if at times slightly less accurate) stream of location esti-
mates. Supplied with reliable readings, the Kalman filter performs better than regres-
sion as deployment density decreases. For deployments with poor calibration and/or
less reliable,“noisy” readings, we would select the non-linear regression algorithm for
its accuracy, despite the high ratios (20–80%) of rejected readings. We have shown
that the algorithms can work well on homogeneous data (pseudoranges or AOAs),
despite the reduction of the information contributing to the location solution. Under
certain configurations, noisy, homogeneous data can be pathological. When working
on homogeneous data with reliable accuracy, the algorithms continue to produce good
location estimates.

• In Chapter 6, we have addressed the use of ultrasound and inertial sensing technologies
for providing navigation and tracking solutions. Based on the detailed characterisation
of the errors in dead reckoning estimates we looked into complementary technologies
that can correct for the drift. Specifically, we have used ultrasound sensors which have
the capability of measuring ranges and angles. We have showed the effectiveness of the
combination of inertial and ultrasound measurement through a simulation of a guid-
ance system. We envisaged that smoother data is required for guidance purposes. To
see the feasibilty of obtaining smoother data we formulated tracking algorithms using
a SCAAT-based Kalman filtering approach. We particularly focused on two types of
tracking algorithms: (i) Kalman filtering of ultrasound range and angle measurements
and (ii) Kalman filtering of inertial data corrected by ultrasound range/angle data. Both
the algorithms have been experimentally evaluated for different trail topologies. Look-
ing at the results of the ultrasound-aided dead reckoning solution, it is clearly a win
over using only inertial data. We also showed how ultrasound fused with inertial mea-
surements outperforms ultrasound-only tracking. The fusion of ultrasound with inertial
measurement, not only improves the accuracy, but will also increase the update rate of
the overall system. However, the increased processing would also consume more of
the mobile device’s resources and is a subject of future investigation to analyse the
tradeoff.

7.2 Concluding remarks
At the very beginning of this thesis we hypothesised that regardless of the type of measure-
ments, fusing multimodal information would help in bringing performance benefits. We have
formulated location algorithms that operate on a wide variety of measurements ranging from
simple and easily available RSSI data to complex timing and angles of arrival information
obtained from different types of technologies and proved that our original hypothesis was
indeed valid.

The presented algorithms in general make use of knowledge of motion to improve their
estimates. In Chapter 4 we have demonstrated the effect of smoothing by incorporating the
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knowledge of the device movement with a commonly used deterministic algorithm. While
the presented algorithm in Chapter 4 is different than the one presented in Chapter 5 and
Chapter 6, we see some commonalities between the algorithms presented in Chapter 5 and
Chapter 6. Essentially we have used Kalman filtering for performing different functionali-
ties – fusion, filtering and tracking. The Kalman filter assumes that the system being esti-
mated has a measurement equation which describes how the measurements are related to the
state to be estimated. If the system being estimated has multiple forms of observation, there
would be multiple corresponding measurement equation, each representing a different rela-
tionship. The filter can then effectively combine or fuse information contained in the hetero-
geneous measurements. The benefit of fusing two heterogenous observations (pseudoranges
and angles-of-arrival) from an UWB system has been detailed in Chapter 5. In Chapter 6, we
have presented tracking algorithms based on Kalman filtering. The first tracking algorithm
we describe uses a Kalman filter for filtering out the noise in the raw ultrasound data and
by itself facilitates tracking of the mobile user following the trail of the deployed “known”
ultrasound beacons. The second tracking algorithm highlights how ultrasound range and an-
gle measurements can correct for drift in inertial estimates using a Kalman filter. Although
improving accuracy was our main focus, we also listed in brief how other desired properties
such as increasing update rate, coverage and reducing the infrastructure can be achieved by
multimodal localisation.

Evaluating a location algorithm is rather difficult and can be considered as a chicken-and-
egg problem. We need to have precise groundtruth to be able to compare the errors in the
estimated position. We have tried our best that a modest evaluation can be made at each stage
of our work. We employed four different techniques for evaluating different parts of the work
presented in this thesis: (i) a combination of conventional tape-measures and Total Station
for static performance analysis, (ii) camera-based tracking was used to validate the UWB
positioning algorithms for assessing the tracking performance, (iii) the Ubisense system was
used for evaluating the tracking performance of Kalman estimates of inertial and ultrasound
sensors and (iv) for WLAN localisation algorithm evaluation we have used manual annota-
tions in combination with an interpolation algorithm to generate the groundtruth of a larger
area.

Extensions to the presented work

While the focus of this work was towards formulation of algorithms that are capable of fus-
ing multimodal data and in comprehending the benefits by applying the concept of multi-
modal localisation on a large variety of measurement types, it would be interesting to anal-
yse the tradeoffs in terms of accuracy vs. complexity and extending the presented algorithms
to provide real-time support. This would be be an important step especially, when the pre-
sented algorithms have to be scaled down in order to cater for providing real-time support
in resource-constrained mobile platforms. However, with increasing improvements in the
mobile platforms, this issue might fade away in due course of time.

In general, we remain a little curious about how slight changes in the model parameters
would affect the Kalman filters performance presented in Chapter 5 and Chapter 6. Although
we have chosen the parameters based on our detailed analysis of understanding the error
distributions of the measurements, while monitoring the progress of parameter search, we
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did notice that large improvements i.e. error reductions can be achieved with some parameter
changes, and some parameters did not impact the results at all. It would be interesting to dig a
little deeper to evaluate the sensitivity of a particular system to changes in the dynamic model
parameters. In future, we plan to explore adaptive Kalman filters that have the capability of
tuning the thresholds automatically based on the current measurement.

We have looked into the usage of some of the algorithms that have the capability to fuse
data from multiple modalities. But, there exist a lot of other algorithms which can operate
on multimodal data. In this respect, there is much to be learned from algorithms designed by
the robotics community.

7.3 Further Research
Looking back from the days when early navigation systems were invented, decades of re-
search have made localisation evolve to a mature stage. This does not however imply that lo-
calisation is a solved problem. The “holy-grail” system that can work at any time, anywhere,
offering good accuracy, high coverage, low cost and preferably self-contained positioning
capability is still not achieved yet, especially for indoor localisation. While developing a
“holy-grail” in our opinion is hard, we strongly believe that the research community will still
strive hard, until the thirst of achieving high accuracy-low cost-high coverage is quenched.

Looking ahead, mobile devices will continue to shrink in size and price while offering
more capability and usefulness to people. This will increase the interaction that users have
with location-aware devices and services in future. The increasing density of a wide variety
of wireless networking and the new location fusion algorithms hold the promise of hybrid lo-
cation systems, that are indeed minimising the accuracy, coverage and cost (both infrastruc-
ture and calibration) tradeoff’s. Advances in location sensing technologies and factors that
are promoting wide-scale coverage are making coarse-grained location information widely
available. Over time, fine-grained location systems and applications will become more eco-
nomically viable and easily deployable. However, a number of issues such as privacy, sensor
fusion algorithms, autocalibration aspects, cheap and self-contained location system still rep-
resent fertile research areas and have to be looked into in more detail in order to realise wider
public acceptance of the location systems and to minimise the accuracy, cost and calibration
tradeoffs.

We have already highlighted the impact of calibration on accuracy of the estimates. In
most of the location systems, knowledge of beacon position or in some cases orientation is
to be known a priori for facilitating location estimation. These parameters can be mapped
in offline (under controlled circumstances) and mostly once prior to use. However, in some
cases where the positioning system has to be deployed ad hoc, an assumption of beacon
positions knowledge may not be applicable. Instead it might be desirable to estimate some
of these parameters dynamically while the system is operational. This makes the idea of
autocalibration attractive. The algorithms presented in both Chapter 5 and 6 assumes the
availability of the location and orientation of the beacons. Manual approaches of measuring
the beacon position and orientation are time consuming and error prone. The most effective
method of calibration would be one that is performed automatically. Algorithms presented
in both Chapter 5 and Chapter 6 could be extended to address autocalibration. While there
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is work already being carried out in this topic in virtual tracking [192], robotics [144] and
mobile and ubiquitous computing [55], positioning and autocalibration systems have to be
combined effectively as one package for realising accurate yet easily deployable location
systems.

As a final remark, the development in indoor positioning technologies, with parallel
progress in reduction of the costs, will spread the indoor positioning to more and more facets
of life. It is hard to predict the amount of innovation that wide-spread indoor positioning,
in combination with other technologies will enable in the future. It is possible to foresee a
time when everyone knows exactly where they are, wherever they are, at all times and the
applications that will arise from the availability of that information will continue to surprise
us!
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[49] Marc Ciurana, David López, and Francisco Barceló-Arroyo. Softoa: Software ranging for toa-based positioning of wlan
terminals. In Proceedings of the Fourth International Symposium on Location and Context Awareness (LoCA ’09), pages
207–221, Berlin, Heidelberg, 2009. Springer-Verlag.

[50] R. Collins, A.Lipton, J.Fujiyoshi, and T.Kanade. Algorithms for cooperative multisensor surveillance. IEEE Communication
Magazine, 89(10):1456–1477, 2001.

[51] Donna Cox, Volodymyr Kindratenko, and David Pointer. IntelliBadge. In Proceedings of First International Workshop
on Ubiquitous Systems for Supporting Social Interaction and Face-to-Face Communication in Public Spaces, pages 41–47.
ACM, 2003.
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[165] Valérie Renaudin, Okan Yalak, and Phillip Tomé. Hybridization of MEMS and Assisted GPS for Pedestrian Navigation.
Inside GNSS, 2(1):34–42, January 2007.
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